I was in middle school when I first came to JPL. I saw all the wonderful spacecraft models like Voyager and Cassini. I was inspired by these achievements.

But what inspired me the most was seeing the Curiosity Mars Rover being built in the clean room. I knew that one day I want to work at JPL. And interning at JPL is a first step to becoming a full-time employee here. JPL is what has inspired me to become an aerospace engineer.

TAGS: #InspiredBy, Student Stories, Curiosity, Internships & Fellowships


The women of the Mars Science Laboratory mission

NASA's Curiosity Mars rover this week completed its first Martian year -- 687 Earth days -- since landing in August 2012. Each day of the rover working on Mars requires several dozen rover team members completing tasks on Earth.

To celebrate reaching this longevity milestone, which had been set as one of the mission's goals from the start, the Curiosity team planned staffing a special day, with women fulfilling 76 out of 102 operational roles.

› Larger image

NASA's Curiosity Mars rover this week completed its first Martian year -- 687 Earth days -- since landing in August 2012. Each day of the rover working on Mars requires several dozen rover team members completing tasks on Earth.

To celebrate reaching this longevity milestone, which had been set as one of the mission's goals from the start, the Curiosity team planned staffing a special day, with women fulfilling 76 out of 102 operational roles.

"I see this as a chance to illustrate to girls and young women that there's not just a place for them in technical fields, but a wide range of jobs and disciplines that are part of the team needed for a project as exciting as a rover on Mars," said Colette Lohr, an engineer at NASA's Jet Propulsion Laboratory, Pasadena, California.

"There's no practical way any one person could learn all the disciplines needed for operating Curiosity," she said. "It takes a team and we rely on each other."

Disciplines range from soil science to software engineering, from chemistry to cartography, in duties ranging from assessing rover-temperature data freshly arriving from Mars to choosing where to point the rover's cameras. Descriptions of the roles, along with names and locations of the team members filling them today, are part of Curiosity Women's Day information available at:


Lohr's role today is strategic mission manager, which means she is responsible for review and approval of plans being developed and modified during the day for rover activities more than three or four days in the future.

She and most of the other engineers and managers on the team are at JPL in California. Today's team, not atypically, also includes members working in 11 other U.S. states, from Massachusetts to Montana, and four other nations: Canada, France, Russia and Spain. Each of the rover's 10 science instruments has people responsible for evaluating newly received data and planning to get more data. Other scientists participating in operations serve on theme groups that pull together information from multiple instruments and choose priorities for upcoming activities.

Curiosity Deputy Project Scientist Joy Crisp of JPL helped organize the special day and will fill the project scientist role, providing scientific leadership in the strategic planning process. She said, "The team has both scientists and engineers, but it's one team working together to accomplish the mission goals."

Each day's rover activities must be planned to fit within budgets of how much time, power and data-downlink capacity are available.

The operational roles fall into categories of tactical, supra-tactical and strategic, which focus, respectively, on the next day's rover activities, the activities two to five days ahead, and planning for weeks or months ahead.

"While some people are focused on today's plan for tomorrow, we need other people to be looking further ahead," Crisp said. "We wouldn't be able to plan complex activities for the rover if we started from scratch each day. We do a lot of work to get a head start on each day."

The operations team for Curiosity is larger than the operations teams for the previous generation of rovers, NASA's Mars Exploration Rovers Spirit and Opportunity. In an experience similar to Women's Curiosity Day, one day in February 2008, Spirit's tactical operations team of about 30 people was almost entirely women.

NASA's Mars Science Laboratory Project is using Curiosity to assess ancient habitable environments and major changes in Martian environmental conditions. JPL, a division of the California Institute of Technology in Pasadena, built the rover and manages the project for NASA's Science Mission Directorate in Washington.

For more information about Curiosity, visit:

http://www.jpl.nasa.gov/msl , http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl/

You can follow the mission on Facebook and Twitter at:



TAGS: Women in STEM, Curiosity, Science, Engineering,


Payam Banazadeh poses with the Engineering Design Unit test-model of the Curiosity rover

There was always something about the universe that mesmerized me. I still have recollections of staring at the night sky full of stars for hours thinking to myself how somewhere in this universe, something incredibly amazing is happening and yet we might not know about it.

It wasn't until high school that I started getting involved in my school's astronomy program and attending "star parties," where we would spend the night looking at different celestial objects with a variety of telescopes -- Schmidt-Cassegrains were my favorite.

A couple of years later, I found myself studying aerospace engineering at The University of Texas at Austin and learning about spacecraft design and space systems engineering. My adviser, Dr. Hans Mark, helped me apply for a summer internship at JPL during my sophomore year.

At this point, I knew little to nothing about what I really wanted to do as an aerospace engineer. I just knew I wanted to work for NASA and help scientists answer some fundamental questions about our universe, such as, "Are we alone?" or, "Is there water on Mars?"

During my first summer internship at JPL, I was part of a team of students who were tasked with designing a secondary payload for the proposed MoonRise mission. MoonRise would have been the first robotic sample-return mission from the moon. We designed a camera system that would have flown on the communications satellite and detected impact flashes from impacting meteorites.

MoonRise was not selected to fly, but this extraordinary experience completely changed my career path.

After my first summer internship at JPL, I knew exactly what I wanted to do as an aerospace engineer. I wanted to help formulate and design innovative concepts.

The next summer, I was fortunate to come back to JPL and work on the Mars Science Laboratory as a flight software team member. We were creating a platform to test the wake cycle robustness of the Curiosity rover. This once-in-a-lifetime opportunity changed me forever. Not many people can say they worked on a rover that is currently on another planet. JPL made that possible for me.

At this point, I had my mind and heart set on getting a job at JPL upon graduation, so I came back to JPL as an intern for the third time during my senior year. This time, I was tasked with working at JPL's state-of-the-art concurrent engineering facility called Team X. I had come full circle to what I was most passionate about, formulation and systems engineering.

Meanwhile, in my free time back at UT-Austin, I was designing my own mission with CubeSats -- small satellites that can fit inside a 10-centimeter cube. With the help of my other aerospace engineer friends I proposed a CubeSat constellation to detect Earth-like planets by measuring the interaction between the stellar solar wind and the magnetosphere of the exoplanets.

I graduated from UT-Austin in December of 2012 with the highest of honors and received the "2012 Cockrell School of Engineering Scholar-Leader Award" from the dean of the engineering school. None of this would have been possible without the invaluable experience I gained as an intern at JPL. The internships at JPL were real hands-on opportunities on real projects. JPL empowered me as an intern and gave me real responsibilities and tasks that everyone on the team truly cared about. My three summer internships at JPL before graduation gave me the tools and fundamentals I needed to excel in any work environment immediately after graduation.

So now I work at JPL on formulation projects as a systems engineer. I have already sponsored interns at JPL as a mentor, and I love the fact that there is no limitation to how fast you can grow here. I am currently the project systems engineer and flight systems engineer on an interplanetary CubeSat mission and work on a variety of different innovative concepts on the side.

In my free time, I go to local schools to talk to students and motivate them to pursue science, technology, engineering and math (STEM) degrees.

JPL was the tipping point in my career. Not only did I gain invaluable technical expertise from my internships, but I also gained the confidence and communication skills vital for any engineer, and especially for a systems engineer.

TAGS: Curiosity, University of Texas Austin, MoonRise, CubeSat, Systems Engineering


Pi in the Sky Infographic

UPDATE - March 17, 2014: The pi challenge answer key is now available for download.

In honor of everyone's favorite mathematical holiday, Pi Day, which celebrates the mathematical constant 3.14 on March 14, NASA/JPL Edu has crafted a set of stellar middle- and high-school math problems to show students that pi is more than just a fancy number.

Pi is all over our skies! It helps power our spacecraft, keeps our Mars rovers' wheels spinning, lets us peer beneath the clouds on Jupiter and gives us new perspectives on Earth. Take part in the fun and see if your classroom can solve some of the same problems that real NASA scientists and engineers do.

Each pi-filled word problem gets a graphic treatment in this printable infographic (available in both poster-size and 8.5-by-11 handouts) that helps students visualize the steps they need to get to a solution. A companion answer key is also available below and walks students through each step of the solutions. It can be printed on the back of the problem-set infographic for an educational classroom poster.

"Pi in the Sky" Downloads:

TAGS: Pi Day, Infographics, Curiosity, Mars, SMAP, Earth, Juno, Jupiter, Cassini, Saturn, K-12

  • Kim Orr

NASA Curiosity Mars Rover Landing Event Videos

Catch up with Clara Ma, Leland Melvin, will.i.am and others featured on NASA's Curiosity Mars Rover Landing Event broadcast as they share what's new in their universe.

Click the play button above to watch the full broadcast.

TAGS: Curiosity, Landing, EDL, Clara Ma, Leland Melvin, will.i.am, Spacecraft 3D

  • NASA/JPL Edu

Gregory Galgana Villar III at JPL

It's five days till launch and Gregory Galgana Villar III, a mere 24 years old and a relatively new hire at NASA's Jet Propulsion Laboratory, is preparing to take part in one of the most ambitious NASA missions. In the wee morning hours of Nov. 26, Villar will step into the dark room in JPL's mission control center -- a place filled with scientists and engineers stationed at computer monitors of all kinds - to anxiously await the launch of a mission eight years in the making.

Villar is one of the youngest verification and validation engineers on NASA's Mars Science Laboratory mission team, a fact that often inspires wonder about his journey.

"I spent two years interning with three different education programs at JPL," said Villar, who participated in the Laboratory's Minority Initiatives Internship, Space Grant and Undergraduate Student Research Program as an undergrad student at Cal Poly, Pomona. "Then I started realizing I needed a job. I sent out emails to about 125 people at the lab and got a job doing cost models. After six months, opportunities with MSL came up, so I applied for a couple of positions and got one."

Tenacity has certainly worked in Villar's favor, but so has his chameleon-like ability to not only take on widely different disciplines, but also rise to success in each one. Over the years, he's gone from observing stars and planets to majoring in physics while interning at JPL with some of the most renowned scientists in the world to now working in an engineering discipline on one of NASA's flagship missions. And while his journey seems astounding to onlookers, Villar chalks it up to the basic skill of adapting.

"As with any job, it's not really your background, it's how smart you are and how well you adapt or how fast you can learn on the job," said Villar. "So long as they see that you're very motivated and smart, they'll take you on for the job."

Now part of the team that tested spacecraft operations and prepared the new Mars rover, Curiosity, for its journey to the Red Planet, Villar is making his own preparations for 7:02 a.m. PST Saturday morning when the Mars Science Laboratory launch window opens and all of the mission team's hard work pays off. It'll be just the beginning of the spacecraft's journey -- and hardly the end to Villar's. In fact, he's already set his sights on his next career move.

"I'm on the Verification and Validation team until we get to Mars," said Villar, who was also recently accepted into the astronautical engineering master's program at the University of Southern California, but is deferring until the rover has landed. "I'm working on extending my future with the mission team, but wherever JPL takes me, wherever my future takes me, is where I'll go."

TAGS: Curiosity, Launch, Internships & Fellowships, Career Guidance

  • Kim Orr

Jason Carlton in the clean room at JPL

Checking in ... beep-beep ... beep-beep.

It’s been an incredible and almost surreal week in the land of jet propulsion, and to try and summarize the emotions and sights into words is daunting, as the vocabulary escapes me.

It seems as though around every corner, you meet someone who is so friendly and inspiring that it’s hard not to just smile and try and listen in amazement. From sending beeps aimed at distant galaxies looking for anomalies in the return signal, to brilliant twenty-somethings building descent stage thrusters capable of hovering above the surface of Mars like a UFO, to the beautiful array of different languages and cultures you hear just on your way to the coffee grove, the people and mission here make it hard to contain a smile.

The department I’m writing from is the Deep Space Network (DSN), Antenna Mechanical Group, an incredibly diverse group of people who have welcomed me with open arms. Comprised of a complex network and interface of all different departments and jobs, the DSN is responsible for monitoring all spacecraft currently exploring the universe, searching the night sky for signals and pushing the envelope of what is possible for future communication and data acquisition.

I have an official government NASA office with a phone and voice mail to boot, and the speed and vigor at which things move around here is mind-blowing. It seems imperative to listen and write fast, even if what you’re hearing seems unreal or beyond belief, and before you know it, you're neck deep in documents and learning curves that didn’t seem possible when you got out of bed this morning. The part I enjoy tremendously is walking outside my office and seeing my fellow DSN antenna mechanical office mates, who are mechanical, civil, structural, aerospace engineers, attacking a white dry erase board with looks of determination. They make cuts in beams, figure out angles and calculate distributed loads in order to find failure points for future antenna-component construction, all of which Effat Rady, my amazing engineering professor at Montana State University has taught me and stressed the importance of, time and time again. It seems as thought the days are lightning quick here, and the only thing I can seem to do after riding my bike home is run in the San Gabriel mountains as far as I can to try to process everything that happened in a day.

The Mars Science Laboratory rover, Curiosity, the largest and most intelligent rover to date, departed the Lab this morning after years of complete dedication and planning by thousands of people.

I was one of a handful of people who was lucky enough to witness the incredible entourage and police escort of the rover -- sending it one step further on its quest to explore where Mankind has not yet set foot -- as my mentor Jason Carlton was an integral part of the rover, descent stage, and heat shield container builds, assembly, and mating of all components with their transports.

TAGS: Curiosity, Launch

  • Andrew Crawford

Curiosity in the clean room at JPL

During a live web chat on January 27, 2011, NASA/JPL engineer Nagin Cox answers questions from students about Mars exploration and rovers.

Watch archived broadcast

TAGS: Broadcast, Curiosity, Rovers, Robotics, Mars

  • NASA/JPL Edu