Kim Orr is a web and content producer for the Education Office at NASA's Jet Propulsion Laboratory. Her pastimes are laughing and going on Indiana Jones style adventures.

Brandon Murphy stands in front of a light sculpture at JPL

Brandon Murphy’s family was well accustomed to his months-long jaunts to Virginia, Florida and Texas, the home of whichever NASA facility had offered him an internship that semester. Freshly inspired and equipped with new skills, yet a little homesick, Murphy always returned to North Carolina, where he’d lived and gone to school since the age of 12.

But when his fifth NASA internship rolled around in the spring of 2016, a dream opportunity at the agency’s Jet Propulsion Laboratory in Southern California, Murphy sat his family down and told them he wouldn’t be coming home this time.

“I packed up my entire house, put it on the back of a truck, and had them ship it here. Then I drove 36 hours from North Carolina to California in El Niño,” said Murphy, who at the time was still finishing up his master’s in computer science at North Carolina A&T State University.

A few years earlier, in the hope of improving his career prospects and “making a difference in the world,” Murphy had set his sights firmly on finding an internship – and eventually, a career – at NASA. When shortly after applying for an internship he got a call from the agency’s Wallops Flight Facility in Virginia, he couldn’t believe it. “At first I thought they were joking. I was like, you’re kidding me. You said NASA, right?”

He accepted almost immediately and spent the next four months developing visualizations and software for an airborne mapping instrument. It didn’t take long before he was hooked. “Ever since [that first internship], I applied at NASA every semester and some opportunities showed up that I didn’t even apply for,” said Murphy.

So when he got an internship offer from his top choice, JPL, with just months to go before earning his degree, Murphy decided to risk it all. “I just took a risk and said, I’m going to come to JPL, put my best foot forward and fingers crossed a full-time position opens up for me.”

His parents, military veterans who had tried to instill the values of minimizing risk were understandably worried. But six months after arriving at JPL, and on the eve of his sixth and final internship, Murphy got the position he was waiting for: a full-time gig in JPL’s cyber security group hunting for threats to the laboratory's systems and developing defenses against them.

Diversity in the Pipeline

Murphy’s story is exactly the kind Jenny Tieu is hoping to see more of at JPL. As one of several program coordinators in the laboratory’s Education Office, which brings hundreds of interns and fellows to JPL each year, Tieu focuses specifically on reaching underrepresented students, like Murphy, and bringing them into NASA’s pipeline – a cadre of workshops, internships and professional development designed to produce the next generation of scientists and engineers.

Internships are an important piece of that pipeline, providing hands-on experience and a foot in the door. Once in the pipeline, students are more likely to end up with a career at a NASA center. This year, for example, close to half of JPL’s new employees who recently graduated from college started at the laboratory as interns or fellows, a new record.

Senior Poster Day at JPL
Graduating seniors present their research during a poster session at JPL in August 2016. The poster day is one of a number of strategies JPL is using to bring students through the final step in NASA's pipeline, a full-time job. Image credit: NASA/JPL-Caltech/Lyle Tavernier

But more than just shape the workforce that will design the spacecraft of the future and explore new worlds, the pipeline is, “a great opportunity to cultivate a community of diverse thinkers and innovators who bring unique perspectives from a multitude of backgrounds,” said Tieu.

Promoting diversity in the pipeline involves a number of strategies by JPL and other NASA centers to reach out to schools that enroll high numbers of students who aren't typically well represented in science, technology, engineering and math (STEM), and partner with organizations working to get students involved in those fields.

One agency-wide program, the Minority University Research and Education Project, or MUREP, is what gave Murphy a chance to explore several careers at NASA – and helped him stand out.

"The combination of all the experiences and opportunities that Brandon had at different NASA centers really helped solidify his experience and make him a prime candidate for a full-time position,” said Tieu. “This is really the work of the MUREP community coming together as a team to provide opportunities and prepare students for the workforce.”

Creating diversity is not without its challenges, though. Perhaps the biggest hurdle is simply making sure students know that opportunities exist for them at NASA. The Education Office and its counterparts across the agency are constantly in search of new ways to reach out to students and encourage them to apply.

In his own way, Murphy is too. He says of his six internships, it was important for him to not only do well for himself, but also for his school, a Historically Black College and University (HBCU), so places like NASA would continue to seek out interns there. Already that attitude has paid off for at least one classmate who recently stopped Murphy in the school’s computer lab to thank him for setting a good example.

“He said, ‘I just wanted to thank you, because when [NASA Johnson Space Center] called to offer me an internship, they said that because of the work you did, they sought other students from A&T,’” said Murphy. “I was like, wow. He’s really going to get an opportunity to experience the great things that I experienced because I got there and put my best foot forward.”

When the Pipeline Ends?

The ultimate goal of the pipeline is to turn students who are interested in STEM into scientists and engineers. But what happens once the former interns are hired comes down to efforts at each NASA center to wrap them into the unique culture.

Brandon Murphy talks to JPL program coordinator Jenny Tieu
Murphy catches up with Tieu midway through his first week as a full-time employee at JPL. The laboratory's Education Office keeps in touch with former interns even after they're hired to help ease them into professional life. Image credit: NASA/JPL-Caltech/Kim Orr

In recent years, JPL has built a strong supportive community for employees who are new to the professional world, offering mentorship and networking opportunities that help with retention. Meanwhile, Tieu and others in the Education Office stay connected with former interns and provide them with resources and help from support groups.

So far, for Murphy, who just started his full-time job last week, it feels like everything fits just right. “This is the place that I really feel comfortable in the work that I’m doing and I see the overall goal, the bigger picture,” said Murphy. “If this is how work is going to be for the rest of my career, I could get used to this.”

His parents have gotten used to it, too. “My mom’s really spilling it all out on Facebook, so I know she’s proud of me,” said Murphy.

Explore our Intern page to learn more about opportunities at JPL and NASA, and apply.

See stories and photos from JPL interns and fellows: 

TAGS: Internships, Fellowships, Programs, MUREP, NASA

  • Kim Orr

It’s not often that the lead characters in a blockbuster film have careers as particle physicists and nuclear engineers – and even less often that those roles are played by women. But the new “Ghostbusters” film, which features an all-female team of scientists and engineers, busts not just ghosts, but also some of the tropes about what it means to work in science, technology, engineering and math. It’s an idea that has scientists and engineers at NASA’s Jet Propulsion Laboratory excited about how it might inspire the next generation.

So if they don’t spend their days bustin’ ghosts, what do JPL's "Ghostbusters" do? Here are the stories of three women in science and engineering at JPL whose jobs, much like their “Ghosbusters” counterparts’, are to explore new realms, battle invisible forces and explain the mysteries around us.

The Leader: Anita Sengupta

Anita Sengupta at JPL

Job title:

Project Manager, Cold Atom Laboratory

What she does:

In a team of professional ghost busters, Anita Sengupta would most certainly be the enthusiastic and multi-talented leader. She’s already taken on roles developing launch vehicles, the parachute that famously helped land the Mars rover Curiosity, and deep-space propulsion systems for missions to comets and asteroids.

Sengupta and other members of the entry, descent and landing team for NASA's Mars rover Curiosity discuss the nail-biting details of the August 2012 landing.

Most recently, she’s carved out a niche as the project manager for an atomic physics mission, called the Cold Atom Laboratory, or CAL.

Since the mission was proposed in 2012, Sengupta has been leading a team of engineers and atomic physicists in developing an instrument that can see the unseen. Their mission is to create an ultra-cold quantum gas called a Bose-Einstein condensate, which is a state of matter that forms only at just above absolute zero. At such low temperatures, matter takes on unique properties that seemingly defy the laws of thermodynamics.

To achieve the feat, the team’s device will be installed on the International Space Station in July 2017, where the microgravity of space will keep the Bose-Einstein condensate suspended long enough for scientists to get a look at how it behaves. Observing this behavior could lead to groundbreaking discoveries, not least of which is a better understanding of how complexity arises in the universe. The facility could also provide new insights into gravity, super fluidity and dark-matter detection.

“We are opening the doorway into a new quantum realm, so we actually don’t know what we’re going to see,” said Sengupta. “That’s what’s so exciting. It’s about discovery.”

Career trajectory:

Sengupta’s career has been defined by her unique ability to take on challenges in new realms of science and engineering. It’s a trait that closely mimics the fictional character who inspired her as a child: Doctor Who.

“I saw the character of the doctor, who was this very eccentric, but loving, kind and brilliant person,” said Sengupta. “I decided I would like to be a person who travels in space, who understands and can apply all fields of science and engineering. That motivated me to be involved in space exploration and, of course, get my doctorate.”

After considering majors in astrophysics, astronomy, biology and aerospace engineering, she settled on aerospace engineering because, she says, “I loved fixing things, and the idea of knowing how to build spacecraft just blew my mind.”

Anita Sengupta with CAL
Sengupta and Donn Liddle stand with a subscale test model of NASA's Orion spacecraft and its parachute in the low-speed wind tunnel at Texas A&M University. The Orion spacecraft is being designed to take humans farther into space than ever before. Before serving as the project manager for CAL, Sengupta was the principal investigator for Orion's subscale test parachute. Image credit: NASA/James Blair

She doesn’t regret the decision. It seems she would have stretched the boundaries of whichever path she chose. Currently, she’s serving multiple leadership roles on the Cold Atom Laboratory team while also teaching astronautical engineering classes as an associate professor at the University of Southern California. And she still manages to carve out time for her other passions, which include driving sport motorcycles, snowboarding and flying planes.

On STEM in pop culture:

“It’s important for young people to understand that to be an intellectual or a scientist does not necessarily correspond to being socially awkward or geeky,” said Sengupta. “You have all varieties of people. A lot of people at JPL are musicians or athletes or I’m a motorcyclist. There are people who have these hobbies and interests outside of doing something traditionally nerdy, so it’s a disservice to STEM to paint people in any particular light.”

The Engineer: Luz Maria Martinez Sierra

Luz Maria Martinez Sierra at JPL

Job title:

Technologist, Natural Space Environments

What she does:

As a nuclear engineer, Luz Maria Martinez Sierra has never built a ghost-bustin’ proton gun, but she does design defenses against invisible forces. In her case, it’s protecting spacecraft from the intense radiation around planets like Jupiter.

“Space is a very hostile environment, and there are a lot of particles and radiation that can be very dangerous to the spacecraft,” said Martinez Sierra. “It’s very important to make sure everything is shielded accordingly, so we run all these simulations to determine, ‘Ok, you will need to protect this and you need to make sure this survives by putting it behind the solar panels.'”

Part of Martinez Sierra's work is designing radiation defense systems for spacecraft like the one created for the Juno mission shown in the animation above. Juno arrived at Jupiter on July 4, 2016 and will fly closer to the planet – and its intense radiation – than ever before. Credit: NASA/JPL-Caltech

In addition to shielding spacecraft against radiation, she designs devices that can analyze it to reveal hidden details about planets, moons and other bodies. By looking at the radiation signatures of these bodies, scientists can better understand what they’re made of and whether they might be home to, for example, the ingredients for life.

Career trajectory:

To the unacquainted, a career in nuclear engineering might seem oddly specific, but Martinez Sierra is quick to point out just how many applications it has, even just at NASA. Nuclear engineers might design systems to protect astronauts venturing to places like Mars, build instruments to study the sun and other stars, or work with spacecraft powered by radioactive materials.

For her part, the career path evolved through a love of physics that traces back to high school in her native Colombia.

“I always loved science, even at a young age,” said Martinez Sierra. “And when I took physics in high school, it just clicked. I loved how everything could be described by physics.”

She started attending local astronomy events and later earned a bachelor’s and master’s degree in engineering physics. In 2014, she was accepted into an internship with the laboratory’s Maximizing Student Potential in STEM program, which “taught me how to be part of a working environment, solving problems with a team and making sure that I belonged in this field,” she says.

Soon after Martinez Sierra was hired on at JPL, she parlayed her internship experience into a mentorship role with the National Community College Aerospace Scholars program.

Luz Maria Martinez Sierra at JPL
Martinez Sierra mentors a team of students competing in a Mars rover challenge as part of the National Community College Aerospace Scholars program. Credit: NASA/JPL-Caltech/Lyle Tavernier

“I see myself in them,” said Martinez Sierra of the students she mentored during the program. “I was lost. I didn’t know what I wanted to study or what I wanted to do in my career or how you go from being in college to being a professional. You don’t see that connection easily. It’s important to help students realize it’s not just magic. You have to pursue it. You have to be proactive.”

That she is. On top of her full-time job and serving as an occasional mentor for students, Martinez Sierra is also earning her doctorate in nuclear engineering.

On STEM in pop culture:

“There are so many different types of engineers and scientists, even at JPL,” said Martinez Sierra. “But they’re always portrayed as the same person in movies and TV shows. I like how in the new ‘Ghostbusters’ movie, the characters are portrayed as these cool people. They’re not boring. They get to play with cool toys and make cool things.”

The Scientist: Jean Dickey

Jean Dickey in her office at JPL

Job title:

Scientist, Sea Level and Ice

What she does:

While the applications have evolved over her 36-year career at JPL, Jean Dickey’s specialty has always been explaining the mysteries that surround us. Her research focuses on the forces and processes that affect our home planet – everything from Earth’s gravity to changes in length-of-day to its evolving climate. She has published more than 70 papers, which include findings of a possible molten core on the moon and a method for predicting the variations in Earth’s rotation.

“Right now, I’m looking at changes in sea-level rise using data from the Jason and GRACE Earth satellites. There are pockets of warm ocean that explain why Earth’s sea-surface temperature was increasing at a lower rate,” said Dickey, referring to a previously unexplained hiatus in the otherwise strong uptick in surface air temperature. “It’s because the heat was going down deep in the ocean and was not accounted for.”

Data streams in from Earth satellites, airborne missions, and on-the-ground observations, and Dickey’s job is to make sense of it all. It’s a crucial part of understanding what’s happening on our home planet – and beyond.

Career trajectory:

Inspired early on by the success of the Sputnik satellite and the ensuing Space Race, and equipped with an affinity for math and science, Dickey was the only one of six siblings to study science. When she graduated from Rutgers University in 1976 with a doctorate in physics, she was well accustomed to being the only woman in her classes and on research teams, but she never let that fact stop her.

She chose to specialize in high-energy particle physics, because as she describes it, “it was finding the essence, the basic building blocks of the universe. The quirks, colors and flavors.”

As a postdoc at Caltech, Dickey analyzed data from particle experiments that were performed at Fermilab, a particle accelerator just outside of Chicago. She studied the dynamics of particle collisions and interpreted the findings, which meant using specialized software to analyze enormous data sets.

After three years at Caltech, she took on a new role at JPL analyzing a much different set of data, but one that was no less intriguing. By studying the round-trip travel time of lasers shot between observatories on Earth and reflectors left on the moon by the Apollo astronauts, Dickey made new discoveries about how the moon oscillates and the Earth rotates, and how small variations can have big impacts on weather, sea level and even space exploration.

Images showing a laser being shot from an Earth observatory to a reflector on the moon
Dickey's first job at JPL was analyzing data from lunar-laser ranging experiments, in which lasers were shot between observatories on Earth (right) and reflectors on the moon left by the Apollo astronauts (left). Credits: NASA

It was a big change from particle physics, but Dickey was hooked. “I was fascinated by Earth rotation and the processes ongoing here on Earth.” Ever since, her research has revolved around the undulations, variations and wobbles that influence Earth’s climate, processes and its place in the solar system.

On STEM in pop culture:

“I like to see women in STEM portrayed as smart, caring people,” said Dickey. “I really dislike roles that show women as ‘space cadets,’ so to speak. I think we should be well represented in movies and in the culture.”

TAGS: Ghostbusters, Particle Physics, Nuclear Engineering, Physicist, Engineer, Scientist, STEM Careers, Find Your Place, Cold Atom Laboratory

  • Kim Orr

NASA is giving people around the world a reason to ooh and aah this July Fourth. At 8:18 p.m. PDT, as fireworks are streaming through the skies across the U.S., the Juno spacecraft will be taking the on-ramp to an orbit around Jupiter.

Can you calculate just how much Juno needs to slow down to get into orbit around Jupiter?

illustrated math problem

See the full problem set (optimized for screen readers and mobile devices) and answers, here

While maybe not as dramatic as a jet-powered landing on Mars, the Juno Orbit Insertion (the name for the process, also called JOI) requires that the spacecraft slow down just enough to not go zooming past Jupiter. As of Thursday, the spacecraft’s fate rested on a series of 1s and Os as a command sequence made the 48-minute journey from a gargantuan antenna in Goldstone, California, to the spacecraft 534 million miles away.

While a successful orbit insertion is now largely out of mission controllers’ hands, there will be no shortage of nail biting on July Fourth. With a five-year journey behind it and lofty goals ahead – which include peering through Jupiter’s thick cloud cover to uncover clues about how our solar system was formed – Juno has a lot resting on what will amount to a 35-minute engine burn. And perhaps even bigger risks are still to come as Juno begins its 33.5 oblong orbits around Jupiter, which will bring the spacecraft closer than ever before to the planet’s cloud tops – and to its lethal radiation.

To follow along on July 4 as Juno begins its journey into Jupiter’s orbit, watch NASA TV live coverage beginning at 7:30 p.m. PDT.

For a mission countdown, images, facts about Jupiter and Juno and other resources, visit NASA’s Solar System Exploration website.

And check out these educational activities for students and teachers from NASA/JPL Edu:

TAGS: Juno, Jupiter, JOI, Spacecraft, Mission, Events

  • Kim Orr

If you weren't able to snag a "Ticket to Explore JPL" this summer, there are still plenty of ways to experience the wonder of space exploration with NASA and the Jet Propulsion Laboratory. Consider these alternatives, which feature some of the same great people, science and engineering as our Ticket to Explore event.

JPL Tours


Tour the clean room, where engineers have built some of NASA's most advanced spacecraft, including the Mars Curiosity rover and the Juno spacecraft, which arrives at Jupiter on July 4. Get a look at the command center for active missions. And see a collection of spacecraft models, moon samples, and other science and mission artifacts in our Visitor Center. JPL offers tours free of charge for individuals and groups. Reserve your spot on the JPL Tours website.

JPL Lecture Series and Talks

Lecture Series

Hear about JPL's latest scientific discoveries, missions, and technology form the scientists, engineers and technologists who are making them a reality. JPL hosts free talks twice per month, on consecutive Thursdays and Fridays at the laboratory and Pasadena City College, respectively. The Thursday talks are also broadcast live and recorded on Ustream. See a calendar of upcoming lectures and learn more, here.

NASA Museum Alliance Events

Museum Alliance Events

NASA's Museum Alliance is a partnership of more than 700 museums, planetariums, science centers, nature centers and youth-serving organizations around the world that receive resources and professional development from NASA – and in turn share those resources with their own audiences, through exhibitions and programming. Visit the Museum Alliance website to see a calendar of NASA space exploration and science events near you.

Night Sky Network Events

Night Sky Network Events

See the stars and explore the wonders of the night sky. The Night Sky Network brings the science, technology and inspiration of NASA missions to the general public through astronomy clubs and events across the country. Find a list of upcoming events, including star parties, telescope workshops and educational talks, on the Night Sky Network website.

NASA Solar System Ambassadors Events

Solar System Ambassadors Events

JPL's Solar System Ambassadors program works with dedicated volunteers throughout the country to share the excitement of the laboratory's space exploration missions and scientific discoveries with local communities. See a calendar of upcoming presentations and outreach events on the Solar System Ambassadors website.

NASA/JPL Edu Events

Edu Events

Discover upcoming educational events, professional development workshops, team competitions, internship openings and other events for students, teachers and parents on our events page.

JPL News

Connect with JPL Online

You can join the conversation with JPL and get updates on the latest happenings without even leaving the house. There are a number of ways to connect with JPL through social media and online.

TAGS: Ticket to Explore JPL, Explore JPL, Events, Tours

  • Kim Orr

Today, after spending 340 days aboard the International Space Station on a mission to better understand the bodily impacts of extended stays in space, NASA astronaut Scott Kelly will begin his return trip to Earth.

> See the NASA Television schedule for coverage of Kelly's return March 1-4

Kelly's mission is a key step in NASA's Journey to Mars, which aims to send American astronauts deeper into space and, eventually, all the way to Mars – on missions lasting more than 900 days.

To get astronauts to Mars, scientists and engineers won't only need to study how such a journey might affect the human body, but also invent new modes of transportation that can land astronauts on the Red Planet and then launch them back to Earth; find efficient ways to supply astronauts with food, water and oxygen; and develop systems for living and working on Mars.

NASA Journey to Mars graphic

> See this infographic from NASA that shows what's in the works and the plans ahead for NASA's Journey to Mars

As a leading center for robotic exploration of the solar system, NASA's Jet Propulsion Laboratory may not seem like it has much to do with sending humans to Mars. But actually, JPL scientists and engineers are helping lay much of the groundwork (sometimes literally!) for NASA's Journey to Mars. The Curiosity, Spirit and Opportunity rovers as well as the Mars Reconnaissance Orbiter have spent years on and around Mars collecting science that may help identify a landing location for a human mission, determine the kinds of science that astronauts will do, and discover key info about surviving in the harsh environment. And a number of other missions and technologies being developed at JPL – Low-Density Supersonic Decelerator (LDSD), Mars 2020 and Mars Sample Return, to name a few – are helping to bring astronauts one small step closer to Mars.

Learn more about the Journey to Mars and get students involved with these activities and resources:


2015 JPL Invention Challenge

Slingshots, catapults and launchers packed the outside mall area at NASA's Jet Propulsion Laboratory in Pasadena, California, on Friday, Dec. 4, as local middle- and high-school students, and JPL employees competed in the annual JPL Invention Challenge.

Twenty-three teams competed to create a device that could launch playground balls into three targets (shaped like the number 18 in honor of the 18th year of the competition) within 60 seconds.

Devices ranged from hand-operated catapults to motorized launchers with laser aiming, but it was some of the simplest designs that performed the best.

Read the full story on JPL News

Explore More

TAGS: Competitions, Contests, JPL Invention Challenge, Engineering Design

  • Kim Orr

Science Fair Showcase at JPL

More than 50 students from schools across Los Angeles County took their science experiments and engineering designs on the road on Tuesday for the opportunity to display their work during a science fair showcase at NASA's Jet Propulsion Laboratory in Pasadena, California.

Students as young as 11 filed into JPL's von Karman auditorium, eager to speak with professional scientists and engineers about their projects, which examined questions like: Could a solar oven be an effective cooking tool? How well does the human eye adjust to light? Is hagfish slime an efficient material for cleaning up oil spills? And how do different building bracing systems stand up in an earthquake?

JPL's chief scientist, Dan McCleese, who oversees the laboratory's research programs, met with students about their projects to offer feedback and encouragement.

"What you're working on today may end up being what you do for the rest of your life, and it's the greatest thing in the world," McCleese said during an opening address to the students. "When I was a freshman in high school, I started studying Mars, and I will admit I do that today."

David Seidel, manager of K-12 programs for JPL's Education Office, which organized the showcase, said it's statements like McCleese's that illustrate the value of science fairs for students.

"When students do a science project and they're properly mentored and they're doing real science, they're experiencing it. They're actually doing the science and engineering themselves and not just talking about it or following some sort of recipe," Seidel said. "So if you're looking for the next generation of scientists, let's get them in the habit of actually trying to do some science while they're still young."

While eighth-grader Sarah Garelick, 13, hasn't yet decided on her future career, her science fair project did give her the chance to investigate a personal interest.

"I was inspired by my dad," said Garelick, whose project looked at how the rate of glucose released into a pancreas would affect insulin levels. "He had his pancreas removed when I was little."

It was a similar motivation that drove sixth-grader Jeanie Benedict, 11, to create an elaborate evaporative cooling system for chinchillas -- a system she named "Chinchiller."

"Last summer during a Los Angeles heatwave, my pet chinchilla died of a heatstroke, so I wanted to create something that could have prevented it," said Benedict, whose project proved such a curiosity for passers-by that she barely had time to grab a slice of the free cake on offer to attendees.

"What stood out to me was the diversity of student projects that represented the diversity of student interests," said education specialist Ota Lutz, who created and starred in an online video series that walks students through the ins and outs of creating their own science fair projects. "Students do a lot of work to develop these science fair projects, so this event was a great opportunity for them to showcase their hard work and interact with professional scientists and engineers."

Enthusiasm for the event was so high that when participants, who had already presented their projects at the Los Angeles County Science Fair, were invited to register for the showcase, the available slots filled up within 24 hours.

"It was a big success," said Seidel. "I think it was eye-opening for a lot of the students and the chaperones to learn about the range of activities we have here at JPL and interact with people who are doing these things professionally."

For more events, activities and resources for students, provided by the JPL Education Office, visit

The JPL Education Office provides formal and informal educators, parents and students with NASA science, technology, engineering and mathematics (STEM) content, including resources, classroom activities and internship opportunities.

TAGS: Science Fair, Science, Engineering, High School, Middle School

  • Kim Orr

Pi in the Sky 2 Infographic

UPDATE - March 16, 2015: The pi challenge answer key is now available for download.

In honor of the "Pi Day of the Century" (3/14/15), the Education Office at NASA's Jet Propulsion Laboratory has crafted another stellar math challenge to show students of all ages how NASA scientists and engineers use the mathematical constant pi.

The 2015 problem set -- available as a web infographic and printable handouts -- features four real-world, NASA math problems for students in grades 4 through 11, including: calculating the dizzying number of times a Mars rover's wheels have rotated in 11 years; finding the number of images it will take the Dawn spacecraft to map the entire surface of the dwarf planet Ceres (the first dwarf planet to be explored); learning the potential volume of water on Jupiter's moon Europa; and discovering what fraction of a radio beam from our most distant spacecraft reaches Earth.

The word problems, which were crafted by NASA/JPL education specialists with the help of scientists and engineers, give students insight into the real calculations space explorers use every day and a chance to see some of the real-world applications of the math they're learning in school.

"Pi in the Sky 2" Downloads:

TAGS: Pi Day, Infographics, Mars Rover, Dawn, Ceres, Europa, Voyager, K-12

  • Kim Orr

NCAS students Arlene Lopez, Khanh Pham, Jose Salinas, Arleena Faith and Laura Medina

Animated gif of miniature rovers driving through an obstacle course

Four miniature rovers will go head-to-head this week at NASA's Jet Propulsion Laboratory in Pasadena, California, as community college students across the state - and one from Hawaii - get a first-hand look at what it's like to work on a robotic space mission.

Wednesday marked the start of the fall 2014 session of the NASA Community College Aerospace Scholars, or NCAS, program, a three-day workshop designed to give community college students a window into the science, technology, engineering and mathematics universe and launch them into future internships and careers at NASA.

To qualify, students took a five-week online course on Mars exploration and were tasked with designing a rover to explore a Red Planet destination of their choosing.

"I focused on the sustainable efforts side," said Arleena Faith, a computer science student at Santa Monica College, who's working on bringing her design skills into the Web development world. "You spend billions of dollars building one of these sophisticated rovers and suddenly it hits something, and you've lost it. So why don't you have a small rover that's like a ball. It rolls everywhere and it helps determine whether the terrain is safe enough for the main rover."

Based on their scores from the design challenge and online course, 40 finalists were chosen to take part in the workshop at JPL. Johnson Space Center in Houston and Marshall Space Flight Center in Huntsville, Alabama, are also hosting their own NCAS student teams this week.

While at the NASA centers, students meet with engineers and scientists, and teams compete in their biggest challenge yet: Building a rover that can navigate through everything from a simulated Martian terrain to budget constraints to win the coveted "mission contract."

The rovers are only about the size of a brick, but they carry a heavy load: The futures of aspiring engineers and scientists.

For Laura Medina, a 24-year-old aeronautical engineering student at San Bernardino Community College, participating in NCAS is a chance to prove to herself that she can.

"At first I was nervous because I feel like I've never been smart enough," said Medina, who after dropping out of high school to help her mom take care of her younger siblings, decided to get her GED and enroll in college so she could fulfill her dream of becoming an engineer. "But I've gotten this far. I've been able to do these things on my own."

For other students at the brink of their next educational leap, it's about getting a push in the right direction.

"I'm sure this experience will help me home in on what type of career I want to go into," said Arlene Lopez, a mechanical engineering student at El Camino College. "I'm leaning toward working with spacecraft."

Khanh Pham is pursuing her lifelong interest in mathematics at Orange Coast College and hopes to become a teacher -- unless, she says, NCAS changes her mind.

Right now, my career goal is to become a math teacher," said Pham, a 39-year-old mother of two who emigrated from Vietnam a little more than two years ago. "But somebody told me that maybe after this trip, I'll want to change my major to aerospace engineering."

Student teams met for the first time on Wednesday to begin preparations for the rover competition, but for many, the draw of seeing a NASA center in person and working with professional engineers and scientists is just as exciting.

"I'm just looking forward to going to JPL," said aerospace and mechanical engineering student Jose Salinas, who's in his second year at Bakersfield Community College. "It'll be my first time at any NASA center, so I'm just really excited. I think nervousness is out the window. I'm just really stoked to go."

For more information on the NCAS program and to apply, visit:

Learn more about JPL internships and fellowships 

NCAS is funded by NASA, managed by the Johnson Space Center, and coordinated locally by the JPL Education Office.

TAGS: NCAS, NASA Community College Aerospace Scholars, Community College, Internships & Fellowships, Robotics

  • Kim Orr