JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Earth
.

Study Finds Climate Link to Atmospheric-River Storms

Nov 08, 2013
Animation of the atmospheric-river event. This animation shows an atmospheric river event over Dec. 18-20, 2010. High-altitude winds pull large amounts of water vapor (yellow and orange) from the tropical ocean near Hawaii and carry it straight to California.
Credit: Anthony Wimmers and Chris Velden, University of Wisconsin-CI
The high- and low-pressure anomaly areas on the map, shown in red/orange (high) and blue (low), are typical of the combined negative phases of the Arctic Oscillation and the Pacific/North American teleconnection. The low-pressure system northwest of California directs atmospheric rivers toward the Sierra Nevada, and the high-pressure systems at higher latitudes prevent the low from drifting northward away from California.
Credit: Bin Guan, NASA/JPL-Caltech and UCLA.
Satellite water-vapor measurements from Dec. 18, 2010, show an atmospheric river making landfall in California. Continents appear in black. The belt of very moist air (red) centered on the equator is the reservoir that supplies atmospheric rivers. On this date, the AO and PNA were both in their negative phases. Water vapor data from the Special Sensor Microwave Imager and the Special Sensor Microwave Imager/Sounder instruments on Defense Meteorological Satellite Program satellites.
Credit: Bin Guan, NASA/JPL-Caltech and UCLA.

A NASA-led study of "atmospheric river" storms and global climate patterns may help predict winter snowfall and spring flooding in California's Sierra Nevadas.

PASADENA, Calif. - A new NASA-led study of atmospheric-river storms from the Pacific Ocean may help scientists better predict major winter snowfalls that hit West Coast mountains and lead to heavy spring runoff and sometimes flooding.

Atmospheric rivers -- short-lived wind tunnels that carry water vapor from the tropical oceans to mid-latitude land areas -- are prolific producers of rain and snow on California's Sierra Nevada mountains. The finding, published in the journal Water Resources Research, has major implications for water management in the West, where Sierra runoff is used for drinking water, agriculture and hydropower.

The research team studied how two of the most common atmospheric circulation patterns in the Northern Hemisphere interact with atmospheric rivers. They found when those patterns line up in a certain way, they create a virtual freeway that leads the moisture-laden winds straight to the Sierras.

Bin Guan of the Joint Institute for Regional Earth System Science and Engineering, a collaboration between NASA's Jet Propulsion Laboratory in Pasadena, Calif., and UCLA, led a team of scientists from NASA, UCLA and the National Oceanic and Atmospheric Administration (NOAA) on this research.

An atmospheric river is a narrow stream of wind, about a mile (1.6 kilometers) high and sometimes of hurricane strength. Crossing the warm tropical Pacific in a few days, it becomes laden with water vapor. A moderate-sized atmospheric river carries as much water as the Mississippi River dumps into the Gulf of Mexico in an average week. When the river comes ashore and stalls over higher terrain, the water falls as snow or rain.

"Atmospheric rivers are the bridge between climate and West Coast snow," said Guan. "If scientists can predict these atmospheric patterns with reasonable lead times, we'll have a better understanding of water availability and flooding in the region." The benefit of improving flood prediction alone would be significant. A single California atmospheric-river storm in 1999 caused 15 deaths and $570 million in damage.

Guan's team used data from the JPL-developed Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite, along with NOAA satellite data and snowpack data from the California Department of Water Resources. They looked at the extremely snowy winter of 2010-2011, when 20 atmospheric rivers made landfall.

The team compared the dates of these events with the phases of the Arctic Oscillation (AO) and the Pacific/North American teleconnection (PNA). These large-scale weather patterns wax and wane, stretching thousands of miles across the atmosphere and shaping the climate of the mid-latitudes, somewhat as the better-known El Niño and La Niña patterns do in the tropical Pacific.

Each pattern affects a different part of the Northern Hemisphere by seesawing between phases of lower-than-average and higher-than-average air pressure over various parts of the globe. For example, the negative phase of the AO is associated with higher pressure in the Arctic and lower pressure in the surrounding lower latitudes. In the positive phase, those highs and lows are reversed.

The phases of each pattern change irregularly and at varying intervals. The researchers charted these phases throughout the winter of 2010-2011. During 15 of the winter's 20 atmospheric river occurrences, both patterns were in the negative phase. The team then looked at the period 1998-2011 and found a similar correspondence: more atmospheric rivers occurred when both patterns were negative.

According to Guan, in the double-negative periods, the high- and low-pressure systems associated with that phase in each pattern mesh to create a lingering atmospheric low-pressure system just northwest of California. That low directs the atmospheric river fire hose straight toward the Sierra Nevadas.

Guan points out that the double-negative phase correlation is rare.

"I looked at 50 years of atmospheric data. Only five months had those phases of the PNA and AO occurring together for more than 15 days of the month," he said.

AIRS was built and is managed by JPL for NASA's Science Mission Directorate in Washington. Aqua is managed by NASA's Goddard Space Flight Center, Greenbelt, Md. JPL is a division of the California Institute of Technology in Pasadena.

For more information on AIRS, visit: http://airs.jpl.nasa.gov .

News Media Contact

Written by Carol Rasmussen

Steve Cole

202-358-0918

stephen.e.cole@nasa.gov

Alan Buis

818-354-0474

alan.buis@jpl.nasa.gov

2013-323

Related News

Climate Change .

NASA-Built Instrument Will Help to Spot Greenhouse Gas Super-Emitters

Earth .

NASA Satellites Detect Signs of Volcanic Unrest Years Before Eruptions

Technology .

POINTER: Seeing Through Walls to Help Locate Firefighters

Climate Change .

After COVID-19 Delay, Delta-X Field Campaign Begins in Louisiana

Asteroids and Comets .

NASA Analysis: Earth Is Safe From Asteroid Apophis for 100-Plus Years

Earth .

Major Earth Satellite to Track Disasters, Effects of Climate Change

Asteroids and Comets .

Asteroid 2001 FO32 Will Safely Pass by Earth March 21

Earth .

NASA Data Powers New USDA Soil Moisture Portal

Weather .

A Pioneering NASA Mini Weather Satellite Ends Its Mission

Climate Change .

NASA Satellites Help Quantify Forests’ Impacts on the Global Carbon Budget

Explore More

Image .

Preparing WATSON for Borehole Descent

Image .

Fluorescence Map of a Greenland Borehole

Image .

WATSON's Field Test in Greenland

Image .

Suez Canal Crisis

Image .

Namibia Dunes

Topic .

Earth

Image .

Pacaya and Fuego Volcanoes, Guatemala

Image .

Mt. Etna--February 26, 2021

Image .

Mt. Etna February 2021

Image .

Tumbiana Stromatolite

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Visions of the Future
Slice of History
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Universe Newsletter
Social Media
RSS
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono