JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Earth
.

GRACE-FO Spacecraft Ready to Launch

May 21, 2018
The Falcon 9 rocket carrying the GRACE-FO twin satellites was raised into the vertical launch position this evening at Space Launch Complex 4E, Vandenberg Air Force Base, California. Liftoff is scheduled for 12:47 p.m. PDT tomorrow, May 22.
Credit: NASA/Bill Ingalls

Twin satellites that will monitor Earth's water cycle are scheduled to launch Tuesday in a unique rideshare arrangement.

May 22, 2018

1:44 pm PDT - Ground controllers have acquired signals from both GRACE Follow-On satellites.

1 pm PDT - NASA's GRACE Follow-On twin satellites have successfully separated from the SpaceX Falcon 9 rocket over the Pacific Ocean. The satellites are slowly moving away from each other and toward their operational separation distance, approximately 137 miles (220 kilometers) apart.

12:47 pm PDT - NASA's GRACE Follow-On mission has launched from Vandenberg Air Force Base, California, on board a SpaceX Falcon 9 rocket. At 11 minutes 47 seconds after liftoff, the two GRACE Follow-On satellites will separate from the rocket.

--------------------------------------------------------

Twin satellites that will monitor Earth's water cycle are scheduled to launch from Vandenberg Air Force Base in Central California on Tuesday, May 22, in a unique rideshare arrangement. The two Gravity Recovery and Climate Experiment Follow-On mission (GRACE-FO) spacecraft will join five Iridium NEXT communications satellites as the payload on a SpaceX Falcon 9 rocket.

Liftoff from Vandenberg's Space Launch Complex 4E is targeted for 12:47 p.m. PDT (3:47 p.m. EDT), with an instantaneous launch window. If needed, an additional launch opportunity is available on Wednesday, May 23.

The twin satellites of NASA's Gravity Recovery and Climate Experiment Follow-on, or GRACE-FO, will track the movement of water around Earth. This short video explains how and why it's important.

GRACE-FO, a collaborative mission of NASA and the German Research Centre for Geosciences (GFZ), continues the work of the original GRACE mission in observing the movement of water and other mass around our planet by tracking the changing pull of gravity very precisely.

Launch Timeline

On liftoff, the Falcon 9 first-stage engines will burn for approximately 2 minutes and 45 seconds before shutting down at main engine cutoff (MECO). The Falcon 9's first and second stages will separate seconds later. Then, the second-stage engine will ignite for the first time (SES1) and burn until the vehicle reaches the altitude of the injection orbit, 305 miles (490 kilometers).

While this burn is going on, the payload fairing -- the launch vehicle's nose cone - will separate into two halves like a clamshell and fall away.

When the rocket's second stage has completed its ascent to the injection orbit altitude, it will pitch down (its nose points down) 30 degrees and roll so that one of the twin GRACE-FO satellites is facing down, toward Earth, and the other is facing up, toward space. Then the second stage engine will cut off (SECO).

About 10 minutes after liftoff, a separation system on the second stage will deploy the GRACE-FO satellites. Separation will occur over the Pacific Ocean at about 17.5 degrees North latitude, 122.6 degrees West longitude. The first opportunity to receive data from the spacecraft will occur at NASA's tracking station at McMurdo, Antarctica, about 23 minutes after separation.

After the GRACE-FO satellites are deployed, the Falcon 9 second stage will coast for half an orbit before reigniting its engine (SES2) to take the Iridium NEXT satellites to a higher orbit for deployment.

From Deployment to Science Separation Distance

At deployment, the GRACE-FO satellites will be released from their payload dispenser in opposite directions at a rate of 0.8 to 1 foot per second each (0.25 to 0.30 meters). The Earth-facing satellite will be pushed down into a lower orbit that is faster on average, while the space-facing satellite will be pushed up into a higher orbit that is slower on average.

For the first few days after launch, the lower, faster satellite will pull slowly ahead of the other until the two satellites are approximately 137 miles (220 kilometers) apart -- the optimal separation distance for science operations. Then the lower, leading satellite will be raised into the same orbit as the higher, trailing satellite. This maneuver will keep the two spacecraft from continuing to drift farther apart, so that the two continue to orbit on the same track, one following the other.

For more information about the mission, visit:

https://gracefo.jpl.nasa.gov

https://www.nasa.gov/missions/grace-fo

The GRACE-FO press kit is available online at:

https://www.jpl.nasa.gov/news/press_kits/grace-fo/

Video and images related to the mission are available at:

https://vimeo.com/266146377

https://nasa.gov/gracefo

› Latest Updates
› 5 Things About GRACE-FO
https://www.jpl.nasa.gov/edu/news/2018/5/18/nasa-mission-gets-the-view-on-earths-water-resources-from-space/
› Teachable Moments blog
› Water Lessons

News Media Contact

Written by Carol Rasmussen

Alan Buis

818-354-0474

alan.buis@jpl.nasa.gov

2018-108

Related News

Earth .

NASA, US and European Partner Satellite Returns First Sea Level Measurements

Technology .

NASA Confirms New SIMPLEx Mission Small Satellite to Blaze Trails Studying Lunar Surface

Earth .

New Data Confirm 2020 SO to Be the Upper Centaur Rocket Booster From the 1960's

Earth .

Follow Sentinel-6 Michael Freilich in Real Time As It Orbits Earth

Climate Change .

US-European Mission Launches to Monitor the World's Oceans

Climate Change .

Sentinel-6 Michael Freilich Satellite Prepared for Launch

Climate Change .

Study: Urban Greenery Plays a Surprising Role in Greenhouse Gas Emissions

Climate Change .

NASA TV to Air Sentinel-6 Michael Freilich Launch, Prelaunch Activities

Earth .

Earth May Have Captured a 1960s-Era Rocket Booster

Earth .

The Anatomy of Glacial Ice Loss

Explore More

Topic .

Earth

Image .

Kilauea Volcano, Hawaii

Infographic .

Inside Hurrricanes

Image .

Mt. Etna, Italy

Image .

Sentinel-6 Michael Freilich First Light Waveform

Image .

Sentinel-6 Michael Freilich First Light Sea Level

Image .

Providencia Island, Colombia

Image .

Kliuchevskoi Volcano, Kamchatka, Russia

Video .

NASA and SpaceX Launch U.S.-European Mission to Monitor World’s Ocean

Image .

Grand Ethiopian Renaissance Dam

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono