JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Weather
.

Clusters of Weather Extremes Will Increase Risks to Corn Crops, Society

April 26, 2022

Drought caused this Iowa corn crop to fail in 2012. As the changing climate increases the frequency of extreme events, the risk will double that corn harvests will fail in at least three of the world’s five major breadbasket regions in the same year.

Credit: USDA

To assess how climate warming will change risks such as crop failures and wildfires, it’s necessary to look at how the risks are likely to interact.

Troubles never come singly, the proverb says. A new NASA study shows that the old saying will become increasingly true of climate troubles in a warmer world. The study shows that extreme weather events such as floods and heat waves will increasingly cluster closer in time and space, heightening the risks of crop failures, wildfires, and other hazards to society.

By the year 2100, increases in heat waves, drought, and excessive rainfall combined will double the risk of climate-related failures of corn harvests in at least three of the world’s six major corn-growing regions in the same year, according to the study, published in Environmental Research Letters. The U.S. Midwest is at the highest risk of being the site of one of these multiple harvest failures.

Many previous studies have modeled changes in a single climate indicator, such as the number of days above 100 degrees Fahrenheit (38 degrees Celsius) in a certain region. But the greatest impacts usually come when extremes occur simultaneously or in close sequence. For example, Western states are all too familiar with the scenario where excessive heat and drought fuel a wildfire, and then heavy rainfall creates a new hazard, landslides, in the burned area.

Get the Latest JPL News

SUBSCRIBE TO THE NEWSLETTER

Climate scientists have been working for years to understand and represent these complex chains of interacting events numerically in climate models – a daunting task that pushes the limits of available computing power. “It’s only in the last five or so years that a framework has been developed for applying compound-risk thinking to climate analysis in a way that you can actually compute without getting in hopelessly over your head,” said study lead author Colin Raymond, a scientist at NASA’s Jet Propulsion Laboratory in Southern California.

For their study, the research team used a well-known German climate model called the Max Planck Institute Grand Ensemble to run 100 individual simulations of the years 1991 to 2100. The simulations of the past (1991 to 2020) showed that the model was able to represent extreme-event clusters, such as the alteration of extreme heat with extreme rainfall, consistently with the way they actually occurred during that period. The researchers analyzed simulations of the future through 2100 to examine probable future changes in climate hazards, particularly in hazards that could occur simultaneously or in close succession.

Raymond and his colleagues focused on how the increased clustering of both temperature and precipitation hazards will affect corn. This important food crop is grown worldwide, with six major regions, or breadbaskets, accounting for about two-thirds of all production. The U.S. is the world’s top corn grower, harvesting some 419 million tons (380.3 million metric tonnes) in 2021.

The model simulations showed that by 2100, extreme heat waves around the world lasting at least three days will occur two to four times as often as they do now. Three-day extremes in rainfall will generally increase 10% to 50% in frequency. The researchers also analyzed how these increased events will cluster in time and in location. They then looked at how all of these changes combined could affect future corn harvests, using the relationship between climate extremes in heat and rainfall and past crop failures as a guide.

By their best estimate, the chance that a cluster of events will cause corn crops to fail in at least three of the world’s breadbaskets in the same year will nearly double, from 29% to 57%, by the year 2100. While small, the chance that harvests will fail in the five largest breadbasket regions in a single year will grow even more significantly – from 0.6% to 5.4%. The U.S. Midwest is the region most likely to be included in years with three breadbasket failures, followed by Central Europe.

The study also examined how risks to wildfires and human health would increase as extremes follow one another more closely. All the results showed, Raymond said, that “things are interconnected in a way that we haven’t quite appreciated up to this point. It’s not just heat waves. It’s not just heat and drought. It’s all of those interconnections that best explain the severe impacts we care most about when we’re trying to prevent major disasters.”

News Media Contact

Jane J. Lee / Andrew Wang

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-0307 / 626-379-6874

jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov

Written by Carol Rasmussen

2022-058

Related News

Earth .

NASA Measures Underground Water Flowing From Sierra to Central Valley

Earth .

NASA Scientists and Satellites Make Sense of Earth’s Subtle Motions

Climate Change .

NASA Space Missions Pinpoint Sources of CO2 Emissions on Earth

Earth .

Watch the Latest Water Satellite Unfold Itself in Space

Earth .

NASA Awards Launch Services Contract for Sentinel-6B Mission

Earth .

NASA Launches International Mission to Survey Earth’s Water

Climate Change .

NASA Sensors to Help Detect Methane Emitted by Landfills

Earth .

Latest International Water Satellite Packs an Engineering Punch

Earth .

Water-Tracking SWOT Satellite Encapsulated in Rocket Payload Fairing

Climate Change .

Water Mission to Gauge Alaskan Rivers on Front Lines of Climate Change

Explore More

Image .

London, England Parks

Mission .

Surface Water and Ocean Topography

Mission .

Surface Water and Ocean Topography

Mission .

Surface Water and Ocean Topography

Image .

Potosi, Bolivia

Image .

California Atmospheric River Storms Captured by NASA's AIRS

Image .

Eriskay Island, Scotland

Image .

Airborne NASA Radar Maps Mauna Loa Lava Changes in Hawaii

Image .

Satellite Data Shows Ground Motion From Mauna Loa Volcano Eruption

Image .

Takawangha Volcano, Alaska

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018