Collage of photos featured in this story.

To gain an edge in one of the world's premier robotics competitions, JPL brought in a team of experts at the forefront of their field – college students. The experience gave the interns and the Laboratory a new perspective on what's possible.


You know that movie trope where a talented mastermind recruits a ragtag team of experts to pull off a seemingly impossible task. That's what I imagine when Ali Agha talks about the more than 30 interns brought to NASA's Jet Propulsion Laboratory to take part in one of the world's premier robotics competitions.

In 2018, a group led by Agha was one of only 12 teams chosen worldwide to compete in the Defense Advanced Research Projects Agency, or DARPA, Subterranean Challenge, a three-year-long competition that concluded this past September and brought together some of the brightest minds in robotics. Their goal was to develop robotic systems for underground rescue missions, or as Agha puts it, "solutions that are so state-of-the-art, there's not even a clear definition of what you're creating."

Calling themselves Team CoSTAR, which stands for Collaborative SubTerranean Autonomous Resilient Robots, the group also included engineers from Caltech, Massachusetts Institute of Technology, Korea Advanced Institute of Science and Technology, Sweden’s Lulea University of Technology, and several industry partners.

Meet some of the researchers, engineers, and interns who make up Team CoSTAR. Credit: NASA/JPL-Caltech | Watch on YouTube

Interns from across the country and around the world came to JPL to help conceive of, build, and test CoSTAR – a coordinated rescue team of flying, crawling, and rolling robots designed to operate autonomously, or with little to no help from humans. But the interns didn't just come to the laboratory to learn from engineers already well versed in building robots to explore extreme environments. In many cases, the interns were the experts.

"The problem we needed to solve, nobody knew how to solve it, so we needed people who are at the cutting edge of these technologies," says Agha. "We needed to get that one person in the world or a few people in the world who work on that specific camera or sensor or data or specific algorithm to come and educate us."

And Agha knew exactly where to find them: colleges and universities.

The interns' contributions would end up reaching far beyond the challenge. And the entire experience – from the mentorship they received to the technology they developed to the friendships they built – would change the course of their careers.

The Visionary

Even the Perseverance Mars rover, the latest and greatest Red Planet explorer designed and built at JPL, requires a fair amount of direction from mission controllers back on Earth to navigate around hazards and know which rocks to zap with its laser or when to phone home.

Since coming to JPL in 2016, Agha had been researching ways to make planet-exploring robots more autonomous so they could make similar decisions on their own. He was especially interested in autonomous technology for underground environments like caves and volcanoes, where the terrain and visibility make remote guidance challenging.

So when DARPA announced that it was launching a competition aimed at the development of autonomous robots for subterranean rescue missions, Agha jumped at the opportunity.

Agha stands in front of a large projector screen with robots of various shapes and sizes lined up against the wall behind him.

Agha gives a presentation at JPL about the technology developed for the DARPA challenge with CoSTAR's robot squad lined up behind him. | › Watch Agha's talk on YouTube | + Expand image

"It was a very good alignment and a great opportunity for JPL and for NASA," says Agha. "We knew if we can get into this program, it's going to expedite the technology development at a really high pace, and that's going to help NASA and JPL to develop these capabilities [for our own projects]."

But like developing robots for space exploration, the requirements would be tough.

Teams would need to build a robotic system that could autonomously navigate four circuits – a tunnel, an urban underground, a cave, and a combination of the three – in search of scientific "artifacts," or signs of human activity, hidden throughout the course. Then, in just 60 minutes, the robots would need to make their way through winding, cavernous, and dangerous terrain to correctly report the locations of as many artifacts as possible.

There were just 12 months between when proposals were selected and the first event in August 2019. Agha needed a plan – and a team.

The Strategist

Sung Kim first came to JPL as an intern in 2017, a year before the DARPA Subterranean Challenge was announced. A Carnegie Mellon doctoral student researching ways to help robots plan under uncertainty, Kim's childhood dream to work for NASA was rekindled when he saw an internship posting with Agha's team.

"From the first meeting, there was a spark," says Kim of his interview with Agha. "At the time, there were not many people actively pursuing that area [of planning under uncertainty]."

Kim spent that summer at JPL helping the team begin to develop what would later become the backbone of CoSTAR – a system in which robots can analyze their surroundings to find a route that covers as much ground as possible, increasing the odds that they will make discoveries along the way.

See caption.

Kim poses for a picture with the JPL sign at the entrance to the Laboratory in Pasadena, California. Image courtesy: Sung Kim | + Expand image

For JPL's part, such technology could be key to designing robots to explore worlds like Jupiter's moon Europa, where the terrain is still relatively unknown. For CoSTAR, it would improve the team's chances of finding artifacts hidden throughout the challenge course, earning the team points toward a victory.

When JPL's DARPA proposal was selected a year later, Agha eagerly enticed the newly graduated Kim back to the laboratory, this time as an employee and the head of CoSTAR's Global Planning Team tasked with "maximizing the chances of finding artifacts hidden in the environment," says Kim.

Kim would be the first of a wave of students who would come to the laboratory over the next several years to lend their expertise in making CoSTAR a reality. In fact, one of them had already arrived.

The Detective

Xianmei "Sammi" Lei was looking to start over. She had come to the U.S. from China and become a legal permanent resident in hopes of finding better career opportunities. But she worried that her options would be limited while she was still making professional connections and learning English. That's when she discovered community college.

"One of the turning points for me here was realizing that we have something called community college," says Lei. "That gave me a lot of opportunities."

It was at Pasadena Community College that Lei started to build a network of peers and professionals and began her foray into the world of robotics. It was also where her passion for computer science was reignited, setting her on a trajectory to JPL and Agha's team.

"I took the beginning level of C++, and I liked it so, so much," says Lei. "I was like, 'Oh my god, you can realize your dreams through programming. That is so powerful!'"

Lei wears a Team CoSTAR shirt and crouches in front of sign that reads DARPA Subterranean Challenge Urban Circuit - To Beta Course.

Lei poses outside the course area holding up nine fingers to represent the number of points won by the team during the Urban Circuit in February 2020. Image courtesy: Sammi Lei | + Expand image

Lei applied for an internship at JPL through the Student Independent Research Intern, or SIRI, program, which is designed to pair students from local community colleges with researchers at the laboratory. She caught Agha's eye thanks to her involvement in a swarm robotics competition. Still relatively new to the field, Lei spent her first internship in 2017 soaking it all in, learning as much as she could, reading papers assigned by Agha, and following him to meetings, she says.

At the encouragement of her growing network, Lei applied and was accepted to a master's program at Cal Poly Pomona. She went on to spend four more years at JPL throughout her graduate degree and the entire DARPA challenge. All the while, she played an integral role on CoSTAR as the person in charge of programming the system to detect the most coveted artifact of all.

"Inside the environment was a dummy that was simulating a human survivor with the same weight, same heat, wearing a safety vest, things like that," says Lei. "My job was to detect those signals with the robot and have it report back to the team so the human supervisor could verify."

But before that could happen, the system would need to overcome any number of hazards, which according to DARPA might include small passages, sharp turns, stairs, rails, large drops, mud, sand, water, mist, smoke, dead ends, slippery terrain, communications constraints, moving walls, and falling debris. The team needed a mobility expert.

The Navigator

"I was doing lots of mathy stuff," says David Fan of his doctoral research at Georgia Tech prior to coming to JPL in the fall of 2018.

Fan had been researching algorithms that could help robots learn to independently navigate complex terrain when his advisor told him about an internship opening on Agha's team with the JPL Visiting Student Researchers Program, or JVSRP. Fan saw it as a chance to take his work out of the theoretical and into the real world.

"Once I joined the team and started working on these robots in real life, it opened up a whole set of new problems that I had never thought about before," he says.

Fan stands with his arms crossed in front of a fake rock wall and spotlights framing a rocky tunnel.

Fan poses in front of the entrance to the DARPA Subterranean Challenge Finals course in September 2021. Fan was one of a handful of team members chosen for the pit crew, which oversaw robot operations during the challenge. Image courtesy: David Fan | + Expand image

Problem one: How to get a robot through a hazard-filled course that requires a system with an almost contradictory set of features – small enough to get through narrow passages but big enough to support computing power, nimble enough to climb stairs and cross slippery terrain but strong enough to withstand falling debris.

Fan spent his early days with the team dreaming up robots with different kinds of locomotion – wheels, tracks, rotors, legs, and so on. Eventually, the team homed in on a solution involving all of the above, multiple robots with unique talents and ways of moving. Fan's doctoral research was key to unlocking how each robot could continually improve their skills, learning to navigate around obstacles as they encountered them.

Like their human counterparts, CoSTAR's robots each bring unique skills to the team, allowing them to autonomously explore caves, pits, tunnels, and other subsurface terrain. Credit: NASA/JPL-Caltech | Watch on YouTube

"Each environment would have its own set of challenges," says Fan, who interned with Agha throughout the DARPA challenge. "Trying to figure out where the robots could safely go in a subway was very different than where they could safely go in a cave or a mine. We broke a lot of robots. It was really fun."

But as often happens in engineering, one solution begets another problem. In this case it was how to coordinate multiple robots and get them working as a team.

The Field Commander

As a child in Indonesia, Muhammad Fadhil Ginting's favorite movie was a documentary about NASA rocket technology built to send astronauts to the Moon. He would watch it and rewatch it, dreaming of one day working at the space agency. But even after he had grown up to earn his bachelor's in engineering and begin to pursue his master's in robotics at one of the world's top universities, ETH Zurich, working for NASA seemed like a distant childhood dream.

That is until he saw an internship opening with Agha's team.

"Back in my undergrad in Indonesia, I was working with underwater robots to explore the ocean. When I found out JPL offered internships with the DARPA challenge team and it was about subsurface explorations, I was so excited," says Ginting who, like Fan, applied through JVSRP, which also brings in a small number of interns from foreign universities to work with JPL researchers. "I met Dr. Agha at an international conference and expressed my interest in joining his team. It was a thrill when he accepted me and welcomed me to the team."

When Ginting came on board, CoSTAR had just placed second in the Tunnel Circuit, the first of the four events.

After helping develop a strategy to coordinate the robots, Ginting was chosen for the team's exclusive "pit crew" along with just four others: Fan, also an intern at the time, and JPL employees Kyon Otsu, Ben Morrell, and Jeffrey Edlund.

On the pit crew, Ginting would have just 30 minutes to set up and release the robots into the subterranean course before he and the others were sequestered in a separate support area from Otsu, the sole robot supervisor. "It meant that I needed to be ready not just for the technical but also operational, anticipating all possible things that can happen in the field."

To prepare both the robots and the pit crew for handling the challenges ahead, the team took multiple field trips around California and to a limestone mine in Kentucky. When that wasn't possible, they sent the robots through cubicle mazes at JPL.

Ginting (shown at 0:18) and other members of team CoSTAR send the robots on a test run through Elma High School in Elma, Washington, in the days leading up to the Urban Circuit. Credit: NASA/JPL-Caltech | Watch on YouTube

Ginting fondly remembers the field trips not just for the opportunity to work out any bugs in the software, but also for the chance to pursue his other passion for outreach, giving talks to college students and kids and chatting up locals at the hotel breakfast bar.

"I liked meeting the community and sharing the excitement of building robots, the excitement of space exploration," says Ginting, who also saw the field trips as a chance to bond with his teammates.

When the Urban Circuit came around in February 2020, the team with Ginting's help earned a first-place spot. And then, COVID hit.

About 20 people, many wearing safety vests, smile, clap, hold their hands up in the air, and cheer.

Team CoSTAR reacts to the news that they placed first in the Urban Circuit. Credit: NASA/JPL-Caltech | + Expand image

An Unexpected Challenge

Like it did with so much else, the pandemic threw the team and the competition for a loop.

Interns were sent home along with most of the rest of JPL's more than 6,000 employees, and the CoSTAR team had to learn how to do their work remotely. Lei recalls testing sensors from her home in Los Angeles or asking other team members to try them out in different environments.

In some ways, the remote work was good for the team. Rather than the intensive testing schedule, "people had more time for thinking," says Lei. Meanwhile, the team was able to bring on remote interns previously unable to travel to the Southern California laboratory.

The Cave Circuit, originally scheduled for November 2020, was canceled, but once vaccines began rolling out and restrictions on indoor gatherings were loosened, DARPA announced that the Final Event would take place in September 2021.

The Light at the End of the Tunnel

A robot shaped like a dog and carrying various tools on its back shines a light into a darkened cave.

One of the team's robots named NeBula-Spot walks on four legs to explore hard-to-access locations, like this narrow cave. Credit: NASA/JPL-Caltech | + Expand image

"We were in pretty good shape – even in the preliminary rounds, we won with a good margin," says Agha. "But in the final event, our calibration system had an issue, so our robots entered the course 30 minutes late. It wasn't the kind of demonstration we were hoping to be able to have, but for that half of the time, it went really perfect."

While CoSTAR did not win the final competition, the overall experience was an unequivocal win not just for the team, but also for the interns and for JPL.

"We got all this great talent and technology – again, huge thanks to our interns and their mentors," says Agha. "They brought all this expertise to JPL, and the amount of capabilities that got developed really changed a lot about [autonomous technology] at JPL. We pushed state-of-the-art boundaries forward. We published strong papers and showed the world JPL's capabilities."

Already, the team's technology is making its way into a number of JPL and NASA projects including a snake-like robot designed to explore deep crevasses on icy worlds beyond Earth, self-driving offroad cars that could inspire future lunar exploration vehicles, and a project researching the possibility of finding microbial life within volcanic caves on Mars.

Many of the interns say the experience changed the course of their careers.

"It really set me on a different trajectory that I hadn't imagined before," says Fan, who is now working for the U.S. Navy in collaboration with JPL on the project to develop offroad self-driving vehicles. "It introduced me to so many of the real-world robotics problems that are out there waiting to be solved. It opened up a lot of doors and introduced me to a lot of people. It completely changed the trajectory of my Ph.D. and my career."

Lei was recently hired at JPL as a full-time employee, and she says she's looking forward to exploring new ways robots can assist humans in the future.

Kim continues to expand his research in new ways, taking part in JPL projects like Europa Lander, which hopes to send the first robot to explore the icy moon considered to be the next frontier in the search for life beyond Earth.

Ginting was accepted into a doctoral program at Stanford and is continuing his research collaboration with Agha and Kim. He says, "Now, I'm so eager to work on robotics research topics that can also work for space exploration."

In July, the entire team of about 150 people plans to meet up for a reunion cake party. Over the course of the challenge, cake parties had become an annual tradition for the tight knit group. They even managed to hold a virtual party in 2020. As with all things CoSTAR, the bakers go above and beyond to make cakes with life-like caves, moving parts, and LEDs.

When we talked, Agha flipped through photos of cake parties past and said that more than anything, it's this – the team camaraderie, the friendships – that is the greatest win of all.


The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Internships, Interns, College, Students, Community College, SIRI, JVSRP, YIP, Higher Education, Robotics, Engineering, Computer Science, Asian Pacific American Heritage Month

  • Kim Orr