Icons and overlays showing an orbital path, heat map, and cat's heart rate are show over an image of an orange tabby cat laying on a gray couch and looking intently off to the side.

Find out how the now famous video beamed from space, showing a cat chasing a laser, marked a milestone for space exploration, and find resources to engage students in related STEM learning.


You may have seen in the news last month that NASA beamed a cat video from space. It was all part of a test of new technology known as Deep Space Optical Communications. While the video went down in cat video history, the NASA technology used to transmit the first ultra-high-definition video from deep space also represented a historic advancement for space exploration – the potential to stream videos from the Moon, Mars, and beyond.

Read on to learn how this new technology will revolutionize space communications. Then, explore STEM learning resources that will get students using coding, math, and engineering to explore more about how NASA communicates with spacecraft.

Why did NASA beam a cat video from space?

Communicating with spacecraft across the solar system means sending data – such as commands, images, measurements, and status reports – over enormous distances, with travel times limited by the speed of light. NASA spacecraft have traditionally used radio signals to transmit information to Earth via the Deep Space Network, or DSN. The DSN is made up of an array of giant antennas situated around the globe (in California, Spain, and Australia) that allow us to keep in contact with distant spacecraft as Earth rotates.

When scientists and engineers want to send commands to a spacecraft in deep space, they turn to the Deep Space Network, NASA’s international array of giant antennas. | Watch on YouTube

Although sending transmissions using radio frequencies works well, advances in spacecraft technology mean we're collecting and transmitting a lot more data than in the past. The more data a spacecraft collects and needs to transmit to Earth, the more time it takes to transmit that data. And with so many spacecraft waiting to take their turn transmitting via the DSN's antennas, a sort of data traffic jam is on the horizon.

This interactive shows a real-time simulated view of communications between spacecraft and the DSN. Explore more on DSN Now

To alleviate the potential traffic jam, NASA is testing technology known as optical communications, which allows spacecraft to send and receive data at a higher information rate so that each transmission takes less of the DSN’s time.

The technology benefits scientists and engineers – or anyone who is fascinated by space – by allowing robotic spacecraft exploring planets we can't yet visit in person to send high-definition imagery and stream video to Earth for further study. Optical communications could also play an important role in upcoming human missions to the Moon and eventually to Mars, which will require a lot of data transmission, including video communication.

But why transmit a video of a cat? For a test of this kind, engineers would normally send randomly generated test data. But, in this case, to mark what was a significant event for the project, the team at NASA's Jet Propulsion Laboratory worked with the center's DesignLab to create a fun video featuring the pet of a JPL employee – a now famous orange tabby named Taters – chasing a laser. The video was also a nod to the project's use of lasers (more on that in a minute) and the first television test broadcast in 1928 that featured a statue of the cartoon character Felix the Cat.

This 15-second ultra-high-definition video featuring a cat named Taters was streamed via laser from deep space by NASA on Dec. 11, 2023. | Watch on YouTube

How lasers improve spacecraft communications

The NASA project designed to test this new technology is known as Deep Space Optical Communications, or DSOC. It aims to prove that we can indeed transmit data from deep space at a higher information rate.

To improve upon the rate at which data flows between spacecraft and antennas on Earth, DSOC uses laser signals rather than the radio signals currently used to transmit data. Radio signals and laser signals are both part of the electromagnetic spectrum and travel at the same speed – the speed of light – but they have different wavelengths. The DSOC lasers transmit data in the near-infrared portion of the electromagnetic spectrum, so their wavelength is shorter than radio waves, and they have a higher frequency.

Each type of wave on the electromagnetic spectrum is represented with a wavy line. Each wave – radio, microwave, infrared, visible, ultraviolet, x-ray, and gamma ray – is between a range of wavelengths that get shorter (from >100,000,000 nm to <.01 nm) and frequencies that get higher (from <3x10^9 to >3x10^19 Hz) from left to right. Visible light makes up a relatively tiny portion of the full spectrum.

This chart compares the wavelength and frequency range of each kind of wave on the electromagnetic spectrum. Note: The graphic representations are not to scale. Image credit: NASA/JPL-Caltech | + Expand image | › Download low-ink version for printing

Since there are more infrared than radio wavelengths over a particular distance, more data can be sent over the same distance using infrared. And since the speed of infrared and radio waves is equal to the speed of light, this also means that more data can be sent in the same length of time using infrared.

As a result, DSOC’s maximum information rate is around 267 megabits per second (Mbps), faster than many terrestrial internet signals. At that high data rate, the 153.6 megabit cat video took only 0.58 seconds to transmit and another 101 seconds to travel the 19 million miles to Earth at the speed of light. Instead, if we had sent the cat video using Psyche's radio transmitter, which has a data rate of 360 kilobits per second, it would have taken 426 seconds to transmit the video, plus the same speed-of-light travel time, to get to Earth.

Here's how DSOC aims to revolutionize deep space communications. | Watch on YouTube

This kind of spacecraft communications isn't without its challenges. Accurately pointing the narrow laser beam is one of the greatest challenges of optical communications.

DSOC consists of a "flight laser transceiver" aboard the Psyche spacecraft – which is currently on its journey to study the asteroid 16-Psyche – and a receiving station on Earth. The flight transceiver is a 22-centimeter-diameter apparatus that can both transmit and receive signals. Its maximum transmitter strength is a low 4 Watts. For the December 2023 test, a 160-Watt beacon signal was transmitted to the DSOC flight transceiver by a 1-meter telescope located at JPL's Table Mountain facility near Wrightwood, California. This beacon signal was used by the Psyche spacecraft as a pointing reference so it could accurately aim the DSOC transceiver at the Earth receiving station – the 5-meter Hale telescope at Caltech’s Palomar Observatory near San Diego.

This animation shows how DSOC's laser signals are sent between the Psyche spacecraft and ground stations on Earth - first as a pointing reference to ensure accurate aiming of the narrow laser signal and then as a data transmission to the receiving station. | Watch on YouTube

When the DSOC laser beam encounters Earth, it is much narrower than a radio signal transmitted from the same distance. In fact, the laser beam is only a few hundred kilometers wide when it reaches Earth, in sharp contrast with an approximately 2.5-million-kilometer-wide radio signal. This narrow beam must be pointed accurately enough so it not only intersects Earth, but also overlaps the receiving station. To ensure that the beam will be received at Palomar Observatory, the transmission must be aimed not directly at Earth, but at a point where Earth will be in its orbit when the signal arrives after traveling the great distance from the spacecraft.

What's next for laser communications

Engineers will do additional tests of the DSOC system as the Psyche spacecraft continues its 2.2-billion-mile (3.6-billion-kilometer) journey to its destination in the asteroid belt beyond Mars. Over the next couple of years, DSOC will make weekly contacts with Earth. Visit NASA's DSOC website to follow along as NASA puts the system through its paces to potentially usher in a new means of transmitting data through space.

How does the cat video relate to STEM learning?

The DSOC project provides a wonderful opportunity to help students understand the electromagnetic spectrum and learn about real-world applications of STEM in deep space communications. Try out these lessons and resources to get students engaged.

Educator Resources

Student Resources

Explore More

Multimedia

Interactives

Downloads

Websites

Articles

TAGS: K-12 Education, Educators, Students, Learning Resources, Teaching Resources, DSOC, DSN, Deep Space Network

  • Ota Lutz
READ MORE

Spikes of light extend from the Sun shining above the glowing blue limb of Earth, as shown from space.

Leap day, Feb. 29, happens every four years because of a mismatch between the calendar year and Earth's orbit. Learn how it works, and get students engaged in leap day STEM.


You may have noticed that there's an extra day on your calendar this year. That's not a typo – it's leap day! Leap day is another name for Feb. 29, a date that typically comes around every four years, during a leap year.

Why doesn't Feb. 29 appear on the calendar every year?

The length of a year is based on how long it takes a planet to revolve around the Sun. Earth takes about 365.2422 days to make one revolution around the Sun. That's about six hours longer than the 365 days that we typically include in a calendar year. As a result, every four years, we have about 24 extra hours that we add to the calendar at the end of February in the form of leap day.

Without leap day, the dates of annual events, such as equinoxes and solstices, would slowly shift to later in the year, changing the dates of each season. After only a century without leap day, summer wouldn’t start until mid-July!

But the peculiar adjustments don't end there. If Earth revolved around the Sun in exactly 365 days and six hours, this system of adding a leap day every four years would need no exceptions. However, Earth takes a little less time than that to orbit the Sun. Rounding up and inserting a 24-hour leap day every four years adds about 45 extra minutes to every four-year leap cycle. That adds up to about three days every 400 years. To correct for that, years that are divisible by 100 don't have leap days unless they’re also divisible by 400.

If you do the math, you'll see that the year 2000 was a leap year, but 2100, 2200 and 2300 will not be.

Have students learn more about leap years with this article from NASA's Space Place, then have them do the math for themselves with this leap day problem set. You can also have students write a letter or poem to be opened on the next leap day or get them learning about orbits across the solar system.

And since we've got an extra 24 hours this year, don't forget to take a little time to relax!

Educator Resources

Student Resources

TAGS: K-12 Education, Math, Leap Day, Leap Year, Events, Space, Educators, Teachers, Parents, Students, STEM, Lessons, Earth Science, Earth

  • Lyle Tavernier
READ MORE

A large tear-drop shaped balloon towers above surrounding work trucks on a flat expanse of snow.

Get to know GUSTO and learn how to bring the science and engineering behind this unique balloon-based mission into the classroom.


A NASA balloon mission designed to study the interstellar medium – the space between stars – will take to the skies above Antarctica in December 2023.

Read on to learn how the GUSTO mission's unique design and science goals can serve as real-life examples of STEM concepts. Then, explore lessons and resources you can use to get students learning more.

What the GUSTO Mission Will Do

Though many people think of space as empty except for things like stars, planets, moons, asteroids, meteors, and comets, it’s anything but. Typically, there is one molecule of matter in every cubic centimeter of the space between stars known as the interstellar medium. In more dense clouds of interstellar gas, there could be as many as 1,000,000 molecules per cubic centimeter. It might not seem like much compared with the 10,000,000,000,000,000,000 molecules in every cubic centimeter of air we breathe, but the interstellar medium can tell us a lot about how stars and planets form and what role gases and dust play in our galaxy and others.

Star-forming nebulas birth Sun-like stars, which turn into red giants, then planetary nebulae, then white dwarfs. Massive stars are also born from star-forming nebulas and become red supergiants, then supernova, then either black holes or neutron stars.

This diagram shows the life cycles of Sun-like and massive stars. Credit: NASA, Night Sky Network | › Learn more about star life cycles

Like plants and animals, stars have a life cycle that scientists want to better understand. Gases and dust grains that make up a dense interstellar cloud, known as a nebula, can become disturbed, and under the pull of their own gravity, begin collapsing in on themselves. Eventually stars form from the gas and planets form from the dust. As a star goes through its life, it eventually runs out of sources of energy. When this happens, the star dies, expelling gases – sometimes violently, as in a supernova – into a new gas cloud. From here, the cycle can start again. Scientists want to know more about the many factors at play in this cycle. This is where GUSTO comes in.

GUSTO – short for Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory – is a balloon-based telescope that will study the interstellar medium, the small amount of gas and dust between the stars. From its vantage point high above almost all of the Earth’s atmosphere, GUSTO will measure carbon, nitrogen, and oxygen emissions in the far-infrared portion of the electromagnetic spectrum, focusing its sights on the Milky Way galaxy and the nearby galaxy known as the Large Magellanic Cloud.

A speckled field of bluish stars is intersected by a diagonal strip of purple and brown clouds covering a glowing yellow band beyond.

Our galaxy, the Milky Way, has hundreds of billions of stars and enough gas and dust to make billions more stars. Credit: NASA | › Full image and caption

The mission is designed to provide scientists with data that will help them understand the complete lifecycle of the gas and dust that forms planets and stars. To achieve its goals, GUSTO will study:

  • The composition and formation of molecular clouds in these regions.
  • The formation, birth, and evolution of stars from molecular clouds.
  • The formation of gas clouds following the deaths of stars. And the re-start of this cycle.
Thick clouds of purple and pastel pink cover a speckled field of stars with clusters of large and especially bright blue and yellow stars glowing through the clouds.

Nearly 200,000 light-years from Earth, the Large Magellanic Cloud is a satellite galaxy of the Milky Way. Vast clouds of gas within it slowly collapse to form new stars. In turn, these light up the gas clouds in a riot of colors, visible in this image from the Hubble Space Telescope. Credit: NASA | › Full image and caption

Scientists hope to use the information collected by GUSTO to develop models of the Milky Way and Large Magellanic Cloud. Studying these two galaxies allows scientists to observe more details and make more accurate models. Those models can then be used for comparing and studying more distant galaxies that are harder to observe.

Why Fly on a Balloon?

Unlike most NASA missions, GUSTO won’t launch on a rocket. It will be carried to approximately 120,000 feet (36.5 kilometers) above Antarctica using what’s known as a Long Duration Balloon, or LDB.

Balloon missions provide a number of advantages to scientists conducting research. They are more affordable than missions that go to space and require less time to develop. They also offer a way to test new scientific instruments and technologies before they are used in space. For these reasons, balloons have become a popular way for university students to gain experience building and testing science instruments.

Explore how balloons are being used for Earth and space science in this video from the Johns Hopkins Applied Physics Laboratory, which is providing the mission operations for GUSTO and the balloon gondola where the mission's instruments will be mounted. | Watch on YouTube

GUSTO's use of the Long Duration Balloon provided by NASA’s Balloon Science Program offers several advantages over other types of scientific balloons. Conventional scientific balloons stay aloft for a few hours or a few days and rely on the balloon maintaining a line-of-sight to send and receive data. Long Duration Balloons use satellites for sending data and receiving commands and can stay afloat for a few weeks to a couple of months.

Made with a thin, strong, plastic film called polyethylene, LDBs are partially inflated with helium. As the balloon rises, the surrounding air pressure decreases, allowing the gas inside the balloon to expand, increasing the volume and pressure of the balloon. When fully expanded, the balloon has a volume of around 40 million cubic feet (1.1 million cubic meters). That’s big enough to fit an entire football stadium inside.

An A-frame support structure with two sets of wing-like solar panels extending from its sides floats above Earth holding a telescope at its center.

GUSTO will be attached to a balloon gondola like the one depicted in this artist's rendering. | + Expand image

The telescope itself will be attached to a platform known as a gondola, which is home to several components that make the mission possible. The multi-axis control system will keep the platform stable during flight, allowing for precisely pointing GUSTO’s 35-inch (90-centimeter) diameter telescope in the right direction. Cryocoolers and liquid helium will keep the telescope’s scientific instruments at the necessary low temperature of -452°F (4° Kelvin). And the gondola will house a radio system that allows operators on the surface to control the balloon and telescope. All these systems will be powered by lithium-ion batteries charged during flight by a set of solar arrays.

Location is Everything

GUSTO is designed to measure terahertz wavelengths (in the far-infrared portion of the electromagnetic spectrum), a range of energy that is easily absorbed by water vapor. However, the observatory's altitude will put it in the upper half of the stratosphere and above 99% of the water vapor in the atmosphere. This makes it an ideal location for the mission to make its measurements and avoid factors that might otherwise obstruct its view.

GUSTO will make its observations from the upper half of the stratosphere, which offers several benefits over observing from lower in the atmosphere or from the ground. Credit: NASA | › Explore the interactive graphic

The stratosphere offers another advantage for GUSTO. This layer of the atmosphere warms as altitude increases, making the top of the stratosphere warmer than the bottom. The colder air at the bottom and warmer air at the top prevents mixing and air turbulence, making the air very stable and providing a great place to observe space. You may have noticed this stability if you’ve seen a flat-topped anvil-shaped storm cloud. That flat top is the cloud reaching the bottom of the stratosphere, where the stable air prevents the cloud from mixing upward.

But why fly GUSTO above Antarctica? Even though balloons can be launched from all over the planet, the 24 hours of sunlight per day provided by the Antarctic summer make the south polar region an ideal launch location for a solar-powered mission like GUSTO. But more important is a weather phenomenon known as an anticyclone. This weather system is an upper-atmosphere counter-clockwise wind flow that circles the South Pole about every two weeks. The Antarctic anticyclone allows for long balloon flights of missions that can be recovered and potentially reflown.

Preparing for Liftoff

To launch a balloon mission in Antarctica, weather conditions have to be just right. The anticyclone typically forms in mid-December but can arrive a little earlier or a little later. Even with the anticyclone started, winds on the ground and in the first few hundred feet of the atmosphere need to be under six knots (seven miles per hour) for GUSTO to launch. A NASA meteorologist provides daily updates on the cyclone and the ground.

Once weather conditions are good and the balloon is launched, it will circle Antarctica about once every 14 days with the wind. The anticyclone typically lasts one to two months. Because GUSTO may be in the air for more than two months, it’s possible that the mission will continue after the anticyclone ends, causing the balloon to drift northward as winter progresses.

Bring GUSTO Into the Classroom

The GUSTO mission is a great opportunity to engage students with hands-on learning opportunities. Students can build a planetary exploration balloon and model how interstellar dust forms into planets. Explore these lessons and resources to get students excited about the STEM involved in the mission.

Resources for Educators

Resources for Students


NASA's Universe of Learning materials are based upon work supported by NASA under award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and the Jet Propulsion Laboratory.

TAGS: GUSTO, Astronomy, Astrophysics, Science, Teaching, Learning, K-12, Classroom, Teachable Moments, Universe of Learning, Balloon Mission, Missions

  • Lyle Tavernier
READ MORE

The partial eclipse looks as if a bite has been taken out of the Sun. The annular looks like an orange ring around the blackened Moon. The total looks like wisps of white around the blackened Moon.

Get ready for the April 2024 total solar eclipse. Learn about the science behind solar eclipses, how to watch safely, and how to engage students in NASA science.


On April 8, 2024, a total solar eclipse will be visible across much of the central and northeastern United States, as well as parts of Mexico and Canada.

Whether you are traveling to the path of the total eclipse or will be able to step outside and watch the eclipse where you live, here's everything you need to know, including what to expect, how to watch safely, and how to engage in scientific observations and discovery with NASA.

What Are Solar Eclipses?

Solar eclipses occur when the Sun, the Moon, and Earth align. For this alignment to happen, two things need to be true. First, the Moon needs to be in the new moon phase, which is when the Moon’s orbit brings it between Earth and the Sun. Second, eclipses can only happen during eclipse seasons, which last about 34 days and occur just shy of every six months. An eclipse season is the time period when the Sun, the Moon, and Earth can line up on the same plane as Earth's orbit during a new or full moon. If a new moon happens during an eclipse season, the shadow cast by the Moon will land on Earth, resulting in a solar eclipse. Most of the time, because the Moon’s orbit is slightly tilted, the Moon’s shadow falls above or below Earth, and we don't get a solar eclipse.

Not all solar eclipses look the same. The distance between the Sun, the Moon, and Earth plays an important role in what we see during a solar eclipse. Even though the Moon is much smaller than the Sun (about 400 times smaller in diameter), the Sun and Moon look about the same size from Earth. This is because the Sun is about 400 times farther away than the Moon. But as the Moon travels its elliptical orbit around Earth, its size appears slightly larger when it is closer to Earth and slightly smaller when it is farther from Earth. This contributes to the different kinds of solar eclipses you might have heard about. For example:

  • During a total solar eclipse, the Moon is closer to Earth in its orbit and appears larger, completely blocking the Sun's disk. This allows viewers in the path of totality to see the Sun’s corona, which is usually obscured by the bright light of the Sun’s surface.
  • Whisps of white haze flare out around the blackened disk of the Moon, which completely covers the Sun's disk

    This image of a total solar eclipse was captured on Aug. 21, 2017 from Madras, Oregon. Image credit: NASA/Aubrey Gemignani | › Full image and caption

  • An annular solar eclipse occurs when the Sun, Moon, and Earth are properly aligned, but the Moon is farther away in its orbit, so it does not completely cover the Sun's disk from our perspective. Annular eclipses are notable for the "ring of fire," a thin ring of the Sun’s disk that's still visible around the Moon during annularity. The name annular eclipse comes from the world of mathematics, where a ring shape is known as an annulus.
  • The bubbling surface of the Sun's disk and the surrounding haze of orange and yellow light can be seen as a ring around the blackened disk of the Moon.

    On Jan. 4, 2017, the Hinode satellite captured these breathtaking images of an annular solar eclipse. Image credit: Hinode/XRT | › Full image and caption

  • Partial eclipses can happen for two reasons. First, viewers outside the path of totality during a total solar eclipse – or the path of annularity during an annular eclipse – will see only part of the Sun’s surface covered by the Moon. The other time a partial eclipse can occur is when the Moon is nearly above or below Earth in its orbit so only part of the Moon’s shadow falls on Earth. In this case, only part of the Sun’s surface will appear covered by the Moon.
  • The Sun appears to have a small bite taken out of the top of its yellow-orange disk. The bite grows in size in this sequence of three images.

    The Sun appears partially eclipsed in this series of photos taken from NASA’s Johnson Space Center in Houston on Aug. 21, 2017. Image credit: NASA/Noah Moran | › Full image and caption

How to Watch the Upcoming Solar Eclipse

First, an important safety note: Do not look directly at the Sun or view any part of the partial solar eclipse without certified eclipse glasses or a solar filter. Read more below about when you can safely view the total solar eclipse without eclipse glasses or a solar filter. Visit the NASA Eclipse website for more information on safe eclipse viewing.

When following proper safety guidelines, witnessing an eclipse is an unparalleled experience. Many “eclipse chasers” have been known to travel the world to see solar eclipses. Here's what to expect on April 8, 2024:

Map of where the October 14 annular eclipse will be visible. Refer to caption for list of locations.

The April 8 total solar eclipse will be visible across much of the central and northeastern United States, as well as Mexico and Canada. Meanwhile, viewers in all of the continental United States, Hawaii, Mexico, Central America, Greenland, Iceland, Ireland, Cook Islands, French Polynesia, the Azores, and parts of Alaska and the United Kingdom will be able to see a partial eclipse. (Note that in some areas, the eclipse will begin before sunrise or end after sunset). | › Full image and caption

The start time and visibility of the eclipse will depend on your location. You can use this map to find detailed eclipse information, including the start time, by clicking on your location.

The eclipse begins when the edge of the Moon first crosses in front of the disk of the Sun. This is called a partial eclipse and might look as if a bite has been taken out of the Sun.

It is important to keep your eclipse glasses on during all parts of the partial solar eclipse. The visible part of the Sun is tens of thousands of times brighter than what you see during totality. You can also use a pinhole camera to view the eclipse.

An approximately 115-mile-wide strip known as the path of totality is where the shadow of the Moon, or umbra, will fall on Earth. Inside this path, totality will be visible starting about 65 to 75 minutes after the eclipse begins.

If you are in the path of totality, it is safe to take off your eclipse glasses and look at the total eclipse only during totality. Be sure to put your glasses back on before the total phase ends and the surface of the Sun becomes visible again. Your viewing location during the eclipse will determine how long you can see the eclipse in totality. In the U.S., viewers can expect to see 3.5 to 5.5 minutes of totality.

After totality ends, a partial eclipse will continue for 60 to 80 minutes, ending when the edge of the Moon moves off of the disk of the Sun.

For more information about the start of the partial eclipse, the start and duration of totality, and the percentage of the Sun eclipsed outside the path of totality, find your location on this eclipse map.

On April 8, NASA Television will host a live broadcast featuring views from telescopes along the path of totality.

What Solar Eclipses Mean for Science

Solar eclipses provide a unique opportunity for scientists to study the Sun and Earth from land, air, and space, plus allow the public to engage in citizen science!

A solid red circle with a smaller white-outlined circle inside it is centered over the disk of the Sun. Streams of yellow, red, and orange shoot out from the Sun, all around the solid circle, while a large solar flare bursts out of the upper left portion of the circle. A time stamp in the corner reads 2000/02/27.

NASA’s Solar and Heliospheric Observatory, or SOHO, constantly observes the outer regions of the Sun’s corona using a coronagraph. Image credit: ESA/NASA/SOHO | + Expand image

Scientists measure incoming solar radiation, also known as insolation, to better understand Earth’s radiation budget – the energy emitted, reflected, and absorbed by our planet. Just as clouds block sunlight and reduce insolation, eclipses create a similar phenomenon, providing a great opportunity to study how increased cloud cover can impact weather and climate.

Solar eclipses can also help scientists study solar radiation in general and the structure of the Sun. On a typical day, the bright surface of the Sun, called the photosphere, is the only part of the Sun we can see. During a total solar eclipse, the photosphere is completely blocked by the Moon, leaving the outer atmosphere of the Sun (corona) and the thin lower atmosphere (chromosphere) visible. Studying these regions of the Sun’s atmosphere can help scientists understand solar radiation, why the corona is hotter than the photosphere, and the process by which the Sun sends a steady stream of material and radiation into space. Annular solar eclipses provide opportunities for scientists to practice their observation methods so that they'll be ready when a total solar eclipse comes around.

Citizen scientists can get involved in collecting data and participating in the scientific process, too, through NASA’s GLOBE program. During the eclipse, anyone in the path of the eclipse and in partial eclipse areas can act as citizen scientists by measuring temperature and cloud cover data and report it using the GLOBE Observer app to help further the study of how eclipses affect Earth’s atmosphere.

Visit NASA's Eclipse Science page to learn more about the many ways scientists are using the eclipse to improve their understanding of Earth, the Moon, and the Sun.

Solar Eclipse Lessons and Projects

Use these standards-aligned lessons and related activities to get your students excited about the eclipse and the science that will be conducted during the eclipse.

Explore More

Eclipse Info

Eclipse Safety

Interactives

Citizen Science

Facts & Figures


NASA's Universe of Learning materials are based upon work supported by NASA under award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and the Jet Propulsion Laboratory.

TAGS: Solar Eclipse, Eclipse, Annular Eclipse, K-12 Education, Lessons, Classroom Resources, STEM Resources

  • Lyle Tavernier
READ MORE

Collage of images representing happenings each month throughout the 2023-2024 school year

Make educational connections to NASA and JPL happenings all year long with this calendar of upcoming events and links to educational resources you can use to explore STEM with us throughout the 2023-2024 school year.


August

All Month – Go Back to School With Us

The start of the school year is a great time to explore all of the resources we have on offer for educators, parents, and K-12 students. These include everything from classroom activities to DIY student projects to video tutorials to expert talks to our Teachable Moments series, which offers education-focused explainers of the latest NASA news.

There's something for every day of the school year, and you can find it all in one place on our Back to School event page. You can also sign up to receive monthly updates about new and featured content as well as upcoming events in your inbox with the JPL Education newsletter.

Learning Resources

August 30 – See Supermoons on Parade

Skygazers will have plenty to moon over in August as the second of two supermoons this month graces the sky on August 30.

Make the event a Teachable Moment by dispelling common misconceptions about supermoons and digging into the real science behind the phenomena. Get students acting out moon phases, then have them apply what they've learned to make a Moon phases calendar and calculator. Plus, explore even more classroom activities and DIY projects all about our Moon.

Learning Resources


September

September 24 – Follow Along as Asteroid Samples Arrive on Earth

Samples collected from the surface of an asteroid parachuted down to Earth on September 24, landing about 70 miles west of Salt Lake City. The samples were collected by the OSIRIS-REx spacecraft, which gathered the material during a daring descent on asteroid Bennu in 2018. The mission, which marks the first time the U.S. has collected samples from an asteroid, will give scientists an unparalleled, up-close look at remnants from our early solar system.

Follow along with the mission by having students do some of the same math as OSIRIS-REx mission planners. Or, have them do their own asteroid-related experiments. It's also a great opportunity to make connections to another NASA sample-return mission.

Learning Resources


October

October 12 – Join NASA for the Psyche Launch

Did you know we can explore asteroids and other far away objects in the solar system to learn more about the interior of our own planet? That's one of the goals of NASA's Psyche mission, which is slated to launch on October 12 from NASA's Kennedy Space Center in Florida. The mission is designed to explore an asteroid – also named Psyche – that may be the remnant of a planet's core.

The Psyche spacecraft is one of just a handful of NASA missions throughout history that have used electric propulsion rather than a chemical engine, which means it's also a great opportunity to make connections to real-world examples of motion and forces. Get a primer on all the engineering and science behind the mission from our Teachable Moments series, then explore related lessons and projects.

Learning Resources

October 14 – Catch the Annular Solar Eclipse

October 14 marks the start of another exciting double-feature for skygazers: an annular solar eclipse followed by a total solar eclipse just six months later. In both events, the Sun, Moon, and Earth will align, creating a spectacular sight in the sky. But during the annular solar eclipse on October 14, a ring of sunlight will remain visible around the Moon. This is due to differences in the relative distances between the Sun, Moon, and Earth during the eclipse. In any case, remember to never look directly at the Sun without proper protection, such as certified solar eclipse glasses.

Another fun way to view a solar eclipse is by making a pinhole camera. Students can even use their pinhole cameras to make solar art. Check out our Teachable Moments article for more info on where and when to watch the eclipse, plus a primer on the science of solar eclipses. And explore even more eclipse lessons and activities – including a math puzzler from our NASA Pi Day Challenge.

Learning Resources

Oct. 31 – Dare Mighty Pumpkins

Every Halloween, during an annual contest held at JPL, our engineers join kids and families across the country in the hallowed tradition of pumpkin carving. But these aren't your average jack-o'-lanterns. JPL pumpkins from years past have included a simulated Moon landing, Mars-themed whack-a-mole, and an exploding pumpkin supernova. The event, which takes place during employees' lunch break, gives all-new credence to the Lab's unofficial motto, "Dare Mighty Things." And it's good timing because this Halloween is also JPL's 87th birthday.

Whether history or Halloween are your thing, we've got ways to make educational connections – including a DIY project that gets students daring mighty pumpkins, themselves.

Learning Resources


November

All Month – Explore STEM Careers

Take part in National Career Development Month in November by exploring STEM opportunities at NASA and JPL. Students can learn more about careers in STEM and hear directly from scientists and engineers working on NASA missions in our Teaching Space video series. Meanwhile, our news page has more about what it takes to be a NASA astronaut and what it's like to be a JPL intern. You can also explore a collection of stories about NASA people, Women at NASA, and Women at JPL, to learn more about the work they do.

For students already in college and pursuing STEM degrees, it's never too soon to start exploring internship opportunities for the summer. The deadline for JPL summer internships is March 29, so refresh your resume and get your application started now. Learn how to stand out with this article on how to get an internship at JPL – which also includes advice for pre-college students.

Learning Resources


December

All Month – Send Your Name to Jupiter

Here's a gift idea that doesn't cost a thing: Send a loved one's name to Jupiter with NASA's Europa Clipper mission. December is the last month to add your name to a microchip that will be flown on the spacecraft along with a poem written by the U.S. Poet Laureate, Ada Limón. The Europa Clipper mission, which is scheduled to launch in October 2024, is designed to explore Jupiter's ice-covered ocean moon Europa – the newest frontier in our search for life beyond Earth. So don't miss the boat – or, in this case, spacecraft – on this exciting opportunity.

Explore activities students can do in class or over winter break to write their own space poetry and engage in hands-on activities and experiments related to the Europa Clipper mission.

Learning Resources

All Month – Prepare for the Science Fair

Before you know it, it'll be science fair time. Avoid the stress of science fair prep by getting students organized and thinking about their projects before the winter recess. Start by watching our video series How to Do a Science Fair Project. A scientist and an engineer from JPL walk your students through all the steps they will need to create an original science fair project by observing the world around them and asking questions.

You can also explore our science fair starter pack of lessons and projects to get students generating ideas and thinking like scientists and engineers.

Learning Resources


January

January 4 - Take a Closer Look at Jupiter's 'Pizza Moon'

Everyone's favorite pizza moon is getting another series of close-ups from NASA's Juno mission. Now that Juno has completed its primary science goals, mission planners are tweaking the spacecraft's orbit to send it past some of Jupiter's most fascinating moons. Io – notable for the more than 150 active volcanoes that splotch its surface like a bubbling cheese pizza – is next on the docket with two planned flybys this school year. Keep an eye on the mission website for updates and images from the first flyby on Dec. 30, 2023 that you can use to engage students before the second flyby on Feb. 3, 2024.

While on the topic of Juno, which holds the title of the most distant solar-powered spacecraft, it's a great opportunity to segue into math lessons involving pi, exponents, and the inverse square law. Or, highlight another record-holder: Rosaly Lopes, the JPL scientist who discovered 71 active volcanoes on Io, for which she was given the 2006 Guiness World Record for her discovery of the most active volcanoes anywhere.

Learning Resources


February

February 18 – Learn What's Next for Mars Exploration

February 18 marks three years since NASA's Perseverance rover touched down on Mars, sticking the landing on one of the riskiest Red Planet descents to date. While the rover is coring away on Mars, collecting a diverse array of scientifically intriguing samples, mission teams here are busy designing, developing, and testing various devices to bring those samples to Earth. While we've collected samples from other objects in the solar system before (see October's asteroid sample return), this would be the first time we've retrieved samples from another planet. It requires an ambitious plan executed by multiple teams that need to achieve a number of other firsts – including the first launch from another planet.

Get students following along with classroom activities, projects, and challenges that have them apply their coding and collaboration skills to designing their own Mars sample return missions.

Learning Resources


March

March 7-15 – Take the NASA Pi Day Challenge

There's more than pie to look forward to on March 14 as we'll be releasing an all-new set of Pi Day Challenge math problems involving NASA missions and science. Look for the latest problem set along with links to more resources and ways to celebrate Pi Day with us starting on March 7. You can get a sneak peek with the resources below, which work all year long, even without the slice of pie – although, we wouldn't blame you if you had one anyway.

Learning Resources


April

April 8 – Watch the Total Solar Eclipse

Time to get some solar eclipse glasses and dig out your pinhole cameras once again – this time for the headliner, a total solar eclipse on April 8. The eclipse will start in the South Pacific Ocean before passing over Mexico and following a diagonal path northeast over the U.S. and Canada. NASA is holding community events across the country where you can hear from speakers and participate in activities. Learn more on the agency's web page for all things solar eclipse.

Whether you're covering eclipse topics for the first time this school year or expanding on learning from October, this solar eclipse is a good time to get students exploring more about the science of eclipses. Start by looking at the five science experiments NASA has funded for the 2024 solar eclipse, then have students investigate solar eclipse science for themselves.

Learning Resources

April 22 - Celebrate Earth Day With NASA

You may not immediately think of Earth science when you think of NASA, but it's a big part of what we do. Earth Day on April 22 is a great time to learn more about our Earth and climate science projects and missions, especially with the much anticipated NISAR mission taking to the skies in 2024 to track minute changes in the planet's surface, including those from natural hazards such as earthquakes, tsunamis, volcanoes and landslides.

Whether you want to focus on Earth’s surface and geology, climate change, extreme weather, or the water budget, we have an abundance of lessons, student projects and Teachable Moments to guide your way.

Learning Resources


May

May 6-10 – Give Thanks to Teachers and Black Holes

It may not seem like there's much to be gained from the dual programming of Black Hole Week and Teacher Appreciation Week on May 6-10, but sending students off to learn more about everyone's favorite spacely phenomenon might just give teachers the breather they deserve after a busy school year.

Have students dig into the science of black holes or even try out an experiment to learn how a black hole collision helped prove the existence of gravitational waves. Meanwhile, teachers can learn about all the ways their work has inspired us.

Learning Resources

All Month – Launch Into Summer

Speaking of black holes, don't let students' learning fall into one as the summer gets into full swing. Send them off with links to these DIY summer projects. There's even more for parents and families on our Learning Space With NASA at Home page, which also has information to help direct students' learning during out-of-school time.

Learning Resources

TAGS: Teachers, Classroom, Lessons, Educators, K-12, Parents, Students, Resources

  • Kim Orr
READ MORE

A cube-shaped spacecraft with two long wing-like solar arrays in the shape of crosses flies toward a large asteroid that appears to have patches of rocky and metal material on its surface

Explore how NASA's Psyche mission aims to help scientists answer questions about Earth and the formation of our solar system. Then, make connections to STEM learning in the classroom.


NASA is launching a spacecraft in October 2023 to visit the asteroid Psyche, a metal-rich asteroid. The mission with the same name, Psyche, will study the asteroid, which is located in the main asteroid belt between Mars and Jupiter, to learn more about our solar system, including the core of our own planet.

Read more to find out what we will learn from the Psyche mission. Get to know the science behind the mission and follow along in the classroom using STEM teaching and learning resources from NASA.

Why It's Important

The dark rocky and metallic Psyche asteroid appears covered with large and small craters in this illustration. Some of the craters have a lighter brown material in them. The asteroid is illuminated from the upper left.

This illustration depicts the 140-mile-wide (226-kilometer-wide) asteroid Psyche, which lies in the main asteroid belt between Mars and Jupiter. Credit: NASA/JPL-Caltech/ASU | + Expand image

Asteroids are thought to be rocky remnants that were left over from the early formation of our solar system about 4.6 billion years ago. Of the more than 1.3 million known asteroids in our solar system, Psyche’s metallic composition makes it unique to study. Ground-based observations indicate that Psyche is a giant metal-rich asteroid about one-sixteenth the diameter of Earth’s Moon and shaped like a potato. Scientists believe it might be the partial nickel-iron core of a shattered planetesimal – a small world the size of a city that is the first building block of a planet. Asteroid Psyche could offer scientists a close look at the deep interiors of planets like Earth, Mercury, Venus, and Mars, which are hidden beneath layers of mantle and crust.

We can’t see or measure Earth’s core directly – it is more than 1,800 miles (3,000 kilometers) below the surface and we have only been able to drill about 7.5 miles (12 kilometers) deep with current technology. The pressure at Earth’s core measures about three million times the pressure of the atmosphere at the surface, and the temperature of Earth’s core is about 9,000 degrees Fahrenheit (5,000 degrees Celsius), so even if we could get science instruments there, the hostile conditions would make operations practically impossible. The Psyche asteroid may provide information that will allow us to better understand Earth’s core, including its composition and how it was created. The asteroid is the only known place in our solar system where scientists might be able to examine the metal from the core of a planetesimal.

The Psyche mission's science goals are to understand a previously unexplored building block of planet formation (iron cores); to explore a new type of world; and to look inside terrestrial planets, including Earth, by directly examining the interior of one of these planetary building blocks, which otherwise could not be seen. The science objectives that will help scientists meet these goals include determining if asteroid Psyche is actually leftover core material, measuring its composition, and understanding the relative age of Psyche's surface regions. The mission will also study whether small metal-rich bodies include the same light elements that are hypothesized to exist in Earth's core, determine if Psyche was formed under similar or different conditions than Earth's core, and characterize Psyche's surface features.

How It Will Work

The Psyche mission will launch on a SpaceX Falcon Heavy rocket. Psyche’s solar arrays are designed to work in low-light conditions because the spacecraft will be operating hundreds of millions of miles from the Sun. The twin plus-sign shaped arrays will deploy and latch into place about an hour after launch from Earth in a process that will take seven minutes for each wing. With the arrays fully deployed, the spacecraft will be about the size of a singles tennis court. The spacecraft’s distance from the Sun will determine the amount of power it can generate. At Earth, the arrays will be able to generate 21 kilowatts, which is enough electricity to power three average U.S. homes. While at asteroid Psyche, the arrays will produce about two kilowatts, which is a little more than what is needed to power a hair dryer.

An illustration shows the Psyche spacecraft in space with its two plus-sign shaped solar panels extended on each side.

An illustration of NASA’s Psyche spacecraft and its vast solar arrays. Credit: NASA/JPL-Caltech/ASU | + Expand image

At left, xenon plasma emits a blue glow from an electric Hall thruster. On the right is a similar non-operating thruster.

At left, xenon plasma emits a blue glow from an electric Hall thruster identical to those that will propel NASA's Psyche spacecraft to the main asteroid belt. On the right is a similar non-operating thruster. Credit: NASA/JPL-Caltech | + View image and details

The spacecraft will rely on the launch vehicle’s large chemical rocket engines to blast off the launchpad and escape Earth’s gravity, but once in space, the Psyche spacecraft will travel using solar-electric propulsion. Solar-electric propulsion uses electricity from the solar arrays to power the spacecraft’s journey to asteroid Psyche. For fuel, Psyche will carry tanks full of xenon, the same neutral gas used in car headlights and plasma TVs. The spacecraft’s four thrusters – only one of which will be on at any time – will use electromagnetic fields to accelerate and expel charged atoms, or ions, of that xenon. As those ions are expelled, they will create thrust that gently propels Psyche through space, emitting blue beams of ionized xenon. The thrust will be so gentle that it will exert about the same amount of pressure you’d feel holding three quarters in your hand, but it’s enough to accelerate Psyche through deep space. You can read more about ion propulsion in this Teachable Moment.

The spacecraft, which will travel 2.2 billion miles (3.6 billion kilometers) over nearly 6 years to reach its destination, will also use the gravity of Mars to increase its speed and to set its trajectory, or path, to intersect with asteroid Psyche’s orbit around the Sun. It will do this by entering and leaving the gravitational field of Mars, stealing just a little bit of kinetic energy from Mars’ orbital motion and adding it to its own. This slingshot move will save propellant, time, and expense by providing a trajectory change and speed boost without using any of the spacecraft’s onboard fuel.

Upon arrival at Psyche, the spacecraft will spend 26 months making observations and collecting data as it orbits the asteroid at different altitudes. Unlike many objects in the solar system that rotate like a spinning top, the asteroid Psyche rotates on its side, like a wheel. Mission planning teams had to take this unique characteristic into account in planning the spacecraft's orbits. The different orbits will provide scientists with ideal lighting for the spacecraft's cameras and they will enable the mission to observe the asteroid using different scientific instruments onboard.

The spacecraft will map and study Psyche using a multispectral imager, a gamma-ray and neutron spectrometer, a magnetometer, and a radio instrument (for gravity measurement). During its cruise to the asteroid, the spacecraft will also test a new laser communication technology called Deep Space Optical Communication, which encodes data in photons at near-infrared wavelengths instead of radio waves. Using light instead of radio allows the spacecraft to send more data back and forth at a faster rate.

Follow Along

Psyche is scheduled to launch no sooner than October 5, 2023 from Kennedy Space Center in Florida. Tune in to watch the launch on NASA TV.

Visit the mission website to follow along as data are returned and explore the latest news, images, and updates about this mysterious world.

Teach It

The Psyche mission is a great opportunity to engage students with hands-on learning opportunities. Explore these lessons and resources to get students excited about the STEM involved in the mission

Resources for Teachers

Activities for Students

Explore More

Resources for Kids

Check out these related resources for kids from NASA Space Place:

Websites

Articles

Images

Videos

Interactives

Printouts

TAGS: Teachers, Classroom, Lessons, Educators, K-12, Parents, Students, Resources, Asteroid TM, Psyche

  • Anne Tapp
READ MORE

Jones, a caucasian man, stands beside Robinson, a Black woman, and Wang, a man of Asian descent

A bi-coastal, multi-layered collaboration brings Ph.D. student interns to JPL for a unique opportunity to work on cutting-edge battery technology.


The last six months, interns Loleth Robinson and Jonah Wang spent their days in the Electrochemistry Lab at NASA’s Jet Propulsion Laboratory, testing, and analyzing novel power-storage cells that are pushing the frontiers of battery technology for space missions.

It’s the type of work that needs to be performed with one’s hands: chemicals mixed, cell casings assembled, wiring tinkered with, batteries cycled.

You can’t learn this in a classroom. At JPL, you can.

Two sets of long black gloves extend from circular openings set into the window panels of an enclosed case. Inside the case are bottles with red and blue caps, wires, and boxes.

Gloves extend from a "glove box" where battery electrolytes are fabricated. Image credit: NASA/JPL-Caltech | + Expand image

The lab greets visitors with hands: four arm-length inflated rubber gloves extend as if to grab something. These gloves, inside out and ready to be fitted onto human arms, are connected to a “glove box” — a glass case filled with what looks like pharmaceutical bottles and the metal chemical canisters of a cartoon mad scientist.

It’s all very analog, retro even.

Beyond the glove boxes, a sinuous tangle of cables cascades over the edge of a desk, winding between battery cell prototypes and a potentiostat, an electronic device that measures the current and voltage cycled through the batteries. As electricity hums through this web of hardware, data pours into a series of computers, filling spreadsheets that wait to be analyzed.

For Robinson and Wang — both Ph.D. students at The City College of New York, studying chemical engineering with a concentration on the development of advanced battery technologies for space — getting their hands on this equipment in a NASA laboratory is as good as it gets.

“I don't think that I could have gotten a better opportunity anywhere else, working under brilliant scientists,” Wang says.

Wang wears lab goggles, a blue labcoat with a JPL patch, and purple surgical gloves and holds wires extending from a web of wires festooned with electrical tape.

Wang connects battery cells to a potentiastat machine to cycle and collect data. Image credit: NASA/JPL-Caltech | + Expand image

That internship opportunity was the product of a collaboration that spans 3,000 miles and three organizations — JPL, CCNY, and NASA’s MIRO program.

Hands on Hardware, Minds on Missions

From its inception, this collaborative internship program between JPL, MIRO, and CCNY’s Center for Advanced Batteries for Space, now in its third year, sought to bring highly-capable Ph.D. students to JPL to put their minds to work solving problems that are of consequence to actual JPL missions and projects.

“I really wanted to make sure that the students had an opportunity to contribute to something meaningful,” says the interns’ JPL mentor, John-Paul Jones, who helped develop the JPL-MIRO-CCNY internship program. Jones is a battery technologist in the Electrochemical Research, Technology & Engineering Group. He is also the cognizant engineer facilitating the development of batteries for two projects — a lander designed to retrieve samples from Mars and a system of self-guided robots known as CADRE. “So we've tried to make sure that their projects align with something that's mission related.”

Robinson and Wang are focused on the Europa Lander and Venus Aerobot mission concepts — building batteries, performing testing, analyzing data, and meeting with their JPL colleagues to present and defend their work.

“They are right in the middle of cutting-edge battery research,” says Will West, the group supervisor of the Electrochemical Research, Technology, & Engineering, who oversees the interns' work with Jones. “They are being treated on these projects just like the other team members. They're doing experiments, generating data, and interpreting the data as a scientist would. Importantly, they must present and defend their work to the JPL team members. By doing so, they strengthen their scientific rigor and communication skills.”

While current battery technologies, primarily lithium-based, have advanced significantly in efficiency and performance in recent decades, they face certain constraints, including resource scarcity, safety concerns, and performance limitations. The batteries that Robinson and Wang are researching and testing could pave the way for improved energy-storing technologies that are more robust in extreme space-like conditions as well as safer and longer lasting even here on Earth, with potential applications ranging from electric vehicles to grid-scale energy storage.

And what does building and testing batteries actually look like?

First, the students synthesize mixtures of chemicals in the glove box to fabricate a novel battery electrolyte. (An electrolyte is the solution inside a battery that transfers ions between the positive and negative terminals.) They then build the battery cell using little metal cell casings that look like the battery you might find in your wristwatch. This all takes place inside the glove box and a vacuum chamber to avoid exposing dangerous chemicals to open air. Once the cell enclosure is complete, the cell can be removed from the glove box and connected to a set of wires that are fed into a potentiostat. This device measures the characteristics of the battery’s current and voltage and channels that information to a computer, where Robinson and Wang can analyze the data.

“It's amazing getting the hands-on experience,” Robinson says. “It’s an absolutely different experience from what I've seen in the industry and, of course, with just regular school research projects.”

Robinson's long braids fall around her face and glasses as she operates a large dropper with her hands and arms inside the glove box.

Robinson mixes chemicals to create a battery electrolyte formula for testing. Image credit: NASA/JPL-Caltech | + Expand image

Beyond building, testing, and analyzing battery cells, Robinson and Wang are also scouring related scientific literature to identify promising applications for future battery technologies.

For an internship, it’s no walk in the park.

“It's definitely a lot of hard work,” Wang says. “There's a really steep learning curve. I've learned a lot in a really short period of time. It's really amazing to be able to learn from actual research scientists who are trained in their fields.”

And while interns are not expected to have the depth of knowledge and experience that seasoned veterans do, Jones and West say they want to prepare the students for their paths in rigorous fields of research.

“Obviously we help them,” Jones says. “But I really want them to have some kind of ownership.”

Rob Messinger, the interns’ doctoral advisor, is an associate professor of chemical engineering at The City College of New York and the director of CCNY’s Center for Advanced Batteries for Space, a lab that focuses on upstream and emerging battery chemistries specifically geared toward powering spacecraft.

Messinger says the partnership with JPL has given the students in his program at CCNY an invaluable experience that he could not have created in the lab or classroom.

“It's difficult to even state or articulate the impact that this [internship program] has on CCNY students — scientifically, professionally, and personally,” Messinger says. “They have the opportunity to go into a NASA lab and directly work on NASA-relevant problems. But I think maybe even more valuable to the students is the opportunity to be mentored and trained by JPL scientists and engineers that have accumulated decades of experience.”

The Power Behind the Program

While the internship program is now humming along in its third year, only a few years ago it was just an idea.

In 2019, Jones received an email from Messinger out of the blue about collaborating on a rechargeable aluminum-graphite battery technology; his interest was piqued. As he read further, Jones saw the opportunity to create a unique internship program at JPL and jumped at the opportunity.

Jones had started at JPL in 2013 as an intern, eventually moving on to a Caltech postdoc stint before landing a full-time position back at the Laboratory. This was his chance to pay it forward.

Messinger thought that some of the research his doctoral students had been conducting in his lab at CCNY could be of interest to JPL.

“We had reason to believe, based on some preliminary data and prior work, that this particular aluminum-graphite technology could deliver high power at low temperatures,” Messinger says. “And so that was the initial hook to work with JPL — because those characteristics could potentially be useful for space.”

With Jones and group supervisor Will West on board at JPL, Messinger submitted a proposal to the MIRO funding opportunity made available by NASA’s Office of STEM Engagement. MIRO, which stands for MUREP Institutional Research Opportunity, was established to strengthen and develop the research capacity and infrastructure of minority-serving institutions in areas of direct alignment with NASA’s missions.

“I long had the idea of working with JPL,” Messinger says. “And then MIRO was the perfect funding source to enable this unique and strategic partnership.”

After some months of planning, Messinger and Jones launched the JPL-CCNY internship program, which was originally set to begin during the summer of 2020. The timeline, however, was derailed due to the pandemic, but after reworking their approach to accommodate remote collaboration, Jones and Messinger put their first intern, Brendan Hawkins, to work in the summer of 2021.

“It was really challenging to try to teach somebody how to build a battery in a lab from 3,000 miles away,” Jones says.

Fortunately, Hawkins was able to later come to JPL in person and gain that valuable hands-on experience for a few months at the end of the program. Since then, the program has hit the ground running, welcoming two other interns, Harrison Asare and Brian Chen, prior to Wang and Robinson in early 2023.

West says the program is a boon to all involved.

“The NASA MIRO program is funding the grad students, and they're working on projects that we assign here at JPL. We are so impressed with the huge contributions they’ve made to the projects,” West says. “So it's a huge win for JPL and NASA. And I would say certainly a win for the grad students to have this experience and a win for CCNY who is now getting these well-trained grad students back.”

Novel Energy Sources

For their part, the JPL staff say they have benefited immensely from the experience with their interns. West says Robinson and Wang’s infusion of ideas has been invaluable to his laboratory.

“I have been amazed by how quickly they acclimate to this high-intensity environment and contribute almost immediately,” West says. “They bring new ideas and fresh perspectives that have resulted in several journal manuscripts.”

Jones says collaborating with the interns has made him a better engineer.

“I think that the best way you learn something is to try to teach it to somebody else,” Jones says. “And I feel like I've learned an awful lot from this.”

Back in New York, the interns bring renewed energy and practical experience to the Center for Advanced Batteries for Space at CCNY.

“The collaboration with JPL has taken a lot of the research and development that we do here at CCNY, and it has given it life, it has given it applications that are exciting — it puts wind under our wings,” Messinger says.

Charged Up to Take Flight

For Robinson and Wang, neither knows exactly where their careers will take them, but both are certain this experience has opened doors.

“My mentors have tried to teach me how to be a better scientific researcher and how to really design and also do experiments,” Wang says. “That's something that might not show up on paper. Being able to say I worked at NASA is great, but I think actually learning the kind of stuff that it takes to do good experiments — that’s what’s really valuable.”

Robinson laughed recalling the moment she decided to pursue this course of study. She attended Messinger's presentation about his research program and never forgot his closing remarks.

“[Messinger] said the two coolest things to work on are dinosaurs or outer space, and dinosaurs are extinct. So take the second-best thing.”

Robinson, who was born in the U.S. but grew up primarily in Costa Rica, says she could have never imagined where that “second best thing” could take her — from a Ph.D. in New York City to working on spacecraft in Southern California to who-knows-what next.

“[Younger] me would have never thought that I'd be working in a NASA internship and doing a Ph.D. in chemical engineering,” Robinson says. “I couldn't even imagine that this was possible.”


The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

The MUREP Institutional Research Opportunity, or MIRO, was established to strengthen and develop the research capacity and infrastructure of Minority Serving Institutions in areas of strategic importance and value to NASA’s mission and national priorities. MIRO works with 15 Minority Serving Institutions to offer awards that aim to support bright minds in STEM, while also enhancing the capability of institutions to perform NASA-related research and education.

The Minority University Research and Education Project, or MUREP, is a larger program through which the NASA Office of STEM Engagement engages underrepresented populations and minority-serving institutions through a wide variety of initiatives.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: College, University, Internships, Opportunities, College Students, MSP, MIRO, MUREP, CCNY

  • Vince Robbins
READ MORE

Collage of resources and offerings from JPL Education, including education events, webinars, Teachable Moments, and lessons

Share your feedback in this 5-minute survey to help JPL Education improve our offerings. 


We're working on improving our offerings for educators, students, and families, and we want to hear from you!

This 5-minute survey will help us learn about what resources and offerings you use the most and what you'd like to see us do more of or do differently. Plus, we'd love to hear about the ways you're using JPL Education resources and any impact they've had on you.

This survey is completely anonymous, but you do have the option to share your email address if you would like to be contacted about future opportunities to provide feedback. 

Related Resources

For K-12 Educators

Explore our collection of nearly 200 STEAM lessons as well as educational explainers of the latest NASA news, expert talks, teaching materials and more.

For K-12 Students

Get students exploring space and science on their own with hands-on projects, video tutorials, expert talks, and career guidance.

For College Students

Learn about internships and fellowships at JPL and NASA, plus meet current interns, and get tips on how to make your resume stand out.

Engage With Us

From student challenges to virtual tours, expert talks, and beyond, there are numerous ways to join the conversation with us.

Explore More

TAGS: K-12 Education, Informal Education, Resources

  • NASA/JPL Edu
READ MORE

A spacecraft with a cylindrical body topped by a flat rectangular solar panel is shown among a starry backdrop interspersed with fuzzy blobs representing dark matter.

Learn about a new mission seeking to understand some of the greatest mysteries of our universe, and explore hands-on teaching resources that bring it all down to Earth.


Scientists may soon uncover new insights about some of the most mysterious phenomena in our universe with the help of the newly launched Euclid mission. Built and managed by the European Space Agency, Euclid will use a suite of instruments developed, in part, by NASA's Jet Propulsion Laboratory to explore the curious nature of dark energy and dark matter along with their role in the expansion and acceleration of our universe.

Read on to learn how the Euclid mission will probe these cosmological mysteries. Then, find out how to use demonstrations and models to help learners grasp these big ideas.

Why It’s Important

No greater question in our universe promotes wonder in scientists and non-scientists alike than that of the origin of our universe. The Euclid mission will allow scientists to study the nearly imperceptible cosmic components that may hold exciting answers to this question.

Edwin Hubble's observations of the expanding universe in the 1920s marked the beginnings of what's now known as the big-bang theory. We've since made monumental strides in determining when and how the big bang would have taken place by looking at what's known as cosmic background radiation using instruments such as COBE and WMAP in 1989 and 2001, respectively. However, there's one piece of Hubble's discovery that still has scientists stumped: our universe is not only expanding, but as scientists discovered in 1998, that expansion is also accelerating.

This side by side comparison shows a constant rate of expansion of the universe, represented by the expanding sphere on the left, and an accelerating rate of expansion of the universe, represented by the expanding sphere on the right. Each dot on the spheres represents a galaxy and shows how galaxies move apart from each other faster in the universe that has an accelerating rate of expansion. | Watch on YouTube

How can this be? It makes intuitive sense that, regardless of the immense force of the big bang that launched all matter across the known universe 13.8 billion years ago, that matter would eventually come to a rest and possibly even start to collapse. Instead, it's as if we've dropped a glass onto the ground and discovered that the shards are flying away from us faster and faster into perpetuity.

A sideways funnel that fans out at one end encapsulates an illustration of the history of the universe starting with the Big Bang 13.7 billion years ago through the first stars, the development of galaxies, and accelerated expansion.

An illustrated timeline of the universe. Credit: WMAP | + Expand image

Scientists believe that answers may lie in two yet-to-be-understood factors of our universe: dark matter and dark energy. Dark matter is unlike the known matter we experience here on Earth, such as what's found on the periodic table. We can't actually see dark matter; we can only infer its presence. It has mass and therefore gravity, making it an attractive force capable of pulling things together. Amazingly, dark matter makes up roughly 27% of the known universe compared with the much more modest 5% of "normal matter" that we experience day to day. However, dark matter is extremely dilute throughout the universe with concentrations of 105 particles per cubic meter.

This animated pie chart shows rounded values for the three known components of the universe: visible matter (5%), dark matter (27%), and dark energy (68%). Credit: NASA's Goddard Space Flight Center | › Full video and caption

In opposition to the attractive force of dark matter, we have dark energy. Dark energy is a repulsive force and makes up roughly 68% of energy in the known universe. Scientists believe that the existence of dark energy and the amount of repulsion it displays compared with dark matter is what's causing our universe to not only expand, but also to expand faster and faster.

Dr. Jennifer Wiseman, a senior project scientist with the Hubble Space Telescope mission, explains how the mission has been helping scientists learn more about dark energy. Credit: NASA Goddard | Watch on YouTube

But to truly understand this mysterious force and how it interacts with both dark matter and normal matter, scientists will have to map barely detectable distortions of light traversing the universe, carefully measuring how that light changes over time and distance in every direction. As JPL Astrophysicist Jason Rhodes explains, “Dark energy has such a subtle effect that we need to survey billions of galaxies to adequately map it.”

And that's where Euclid comes in.

How It Works

The European Space Agency and NASA each contributed to the development of the Euclid mission, which launched from Cape Canaveral Space Force Station in Florida on July 1. The spacecraft consists of a 1.2-meter (48-inch) space telescope and two science instruments: an optical camera and a near-infrared camera that also serves as a spectrometer. These instruments will provide a treasure trove of data for scientists of numerous disciplines, ranging from exoplanet hunters to cosmologists.

https://www.jpl.nasa.gov/edu/images/redshift_demo.gif

Light waves get stretched as the universe expands similar to how this ink mark stretches out as the elastic is pulled. Get students modeling and exploring this effect with this standards-aligned math lesson. Credit: NASA/JPL-Caltech | + Expand image

This infographic is divided into three sectionss. The first describes how wavelengths increase over time, shifting from blue to yellow to red as objects in space get older and farther away. The second shows how light stretched by the expansion of space becomes redder and enters the infrared portion of the electromagnetic spectrum. The third shows how telescopes like Roman use infrared detectors to see this ancient light and learn about the early universe.

This graphic illustrates how cosmological redshift works and how it offers information about the universe’s evolution. Credit: NASA, ESA, Leah Hustak (STScI) | › Full image and caption

As Gisella de Rosa at the Space Telescope Science Institute explains, “The ancillary science topics we will be able to study with Euclid range from the evolution of the objects we see in the sky today to detecting populations of galaxies and creating catalogs for astronomers. The data will serve the entire space community.”

The cameras aboard Euclid will operate at 530-920 nanometers (optical light) and at 920-2020 nanometers (near infrared) with each boasting more than 576 million and 65 million pixels, respectively. These cameras are capable of measuring the subtle changes to the light collected from celestial objects and can determine the distances to billions of galaxies across a survey of 15,000 square degrees – one-third of the entire sky.

Meanwhile, Euclid's spectrometer will collect even more detailed measurements of the distance to tens of millions of galaxies by looking at redshift. Redshift describes how wavelengths of light change ever so slightly as objects move away from us. It is a critical phenomenon for measuring the speed at which our universe is expanding. Similar to the way sound waves change as a result of the Doppler effect, wavelengths of light are compressed to shorter wavelengths (bluer) as something approaches you and extended to longer wavelengths (redder) as it moves away from you. As determined by a Nobel Prize winning team of astronomers, our universe isn’t just red-shifting over time, distant objects are becoming redder faster.

Euclid will measure these incredibly minuscule changes in wavelength for objects near and far, providing an accurate measurement of how the light has changed as a factor of time and distance and giving us a rate of acceleration of the universe. Furthermore, Euclid will be able to map the relative densities of dark matter and normal matter as they interact with dark energy, creating unevenly distributed pockets of more attractive forces. This will allow scientists to identify minute differences in where the universe is expanding by looking at the way that light is altered or "lensed."

The multi-dimensional maps created by Euclid – which will include depth and time in addition to the height and width of the sky – will inform a complementary mission already in development by NASA, the Nancy Grace Roman Space Telescope. Launching in 2026, this space telescope will look back in time with even greater detail, targeting areas of interest provided by Euclid. The telescope will use instruments with higher sensitivity and spatial resolution to peer deeper into redshifted and faint galaxies, building on the work of Euclid to look farther into the accelerating universe. As Caltech’s Gordon Squires describes it: “We’re trying to understand 90% of our entire universe. Both of these telescopes will provide essential data that will help us start to uncover these colossal mysteries.”

Teach It

The abstract concepts of the scope and origin of our universe and the unimaginable scale of cosmology can be difficult to communicate to learners. However, simple models and simulations can help make these topics more tangible. See below to find out how, plus explore more resources about our expanding universe.

Resources

Explore More


NASA's Universe of Learning materials are based upon work supported by NASA under award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and the Jet Propulsion Laboratory.

TAGS: K-12 Education, Teaching, Teachers, Educators, Resources, Universe, Dark Matter, Dark Energy, Euclid, Nancy Grace Roman Space Telescope, Universe of Learning

  • Brandon Rodriguez
READ MORE