JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

'Shallow Lightning' and 'Mushballs' Reveal Ammonia to NASA's Juno Scientists

Aug 05, 2020
This illustration uses data obtained by NASA's Juno mission to depict high-altitude electrical storms on Jupiter.
This illustration uses data obtained by NASA's Juno mission to depict high-altitude electrical storms on Jupiter.
Credit: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt
Full Image Details
In the center of this JunoCam image, small, bright pop-up clouds seen rise above the surrounding features. Clouds like these are thought to be the tops of violent thunderstorms responsible for shallow lighting.
In the center of this JunoCam image, small, bright pop-up clouds seen rise above the surrounding features. Clouds like these are thought to be the tops of violent thunderstorms responsible for shallow lighting.
Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill © CC BY
Full Image Details

The spacecraft may have found where the colorless gas has been hiding on the solar system's biggest planetary inhabitant.

New results from NASA's Juno mission at Jupiter suggest our solar system's largest planet is home to what's called "shallow lightning." An unexpected form of electrical discharge, shallow lightning originates from clouds containing an ammonia-water solution, whereas lightning on Earth originates from water clouds.

Other new findings suggest the violent thunderstorms for which the gas giant is known may form slushy ammonia-rich hailstones Juno's science team calls "mushballs"; they theorize that mushballs essentially kidnap ammonia and water in the upper atmosphere and carry them into the depths of Jupiter's atmosphere.

The shallow-lightning findings will be published Thursday, Aug. 6, in the journal Nature, while the mushballs research is currently available online in the Journal of Geophysical Research: Planets.

Since NASA's Voyager mission first saw Jovian lightning flashes in 1979, it has been thought that the planet's lightning is similar to Earth's, occurring only in thunderstorms where water exists in all its phases - ice, liquid, and gas. At Jupiter this would place the storms around 28 to 40 miles (45 to 65 kilometers) below the visible clouds, with temperatures that hover around 32 degrees Fahrenheit (0 degrees Celsius, the temperature at which water freezes). Voyager, and all other missions to the gas giant prior to Juno, saw lightning as bright spots on Jupiter's cloud tops, suggesting that the flashes originated in deep water clouds. But lightning flashes observed on Jupiter's dark side by Juno's Stellar Reference Unit tell a different story.

"Juno's close flybys of the cloud tops allowed us to see something surprising - smaller, shallower flashes - originating at much higher altitudes in Jupiter's atmosphere than previously assumed possible," said Heidi Becker, Juno's Radiation Monitoring Investigation lead at NASA's Jet Propulsion Laboratory in Southern California and the lead author of the Nature paper.

Becker and her team suggest that Jupiter's powerful thunderstorms fling water-ice crystals high up into the planet's atmosphere, over 16 miles (25 kilometers) above Jupiter's water clouds, where they encounter atmospheric ammonia vapor that melts the ice, forming a new ammonia-water solution. At such lofty altitude, temperatures are below minus 126 degrees Fahrenheit (minus 88 degrees Celsius) - too cold for pure liquid water to exist.

This animation takes the viewer on a simulated journey into Jupiter's exotic high-altitude electrical storms. Get an up-close view of Mission Juno's newly discovered "shallow lighting" flashes and dive into the violent atmospheric jet of the Nautilus cloud.

Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill

"At these altitudes, the ammonia acts like an antifreeze, lowering the melting point of water ice and allowing the formation of a cloud with ammonia-water liquid," said Becker. "In this new state, falling droplets of ammonia-water liquid can collide with the upgoing water-ice crystals and electrify the clouds. This was a big surprise, as ammonia-water clouds do not exist on Earth."

The shallow lightning factors into another puzzle about the inner workings of Jupiter's atmosphere: Juno's Microwave Radiometer instrument discovered that ammonia was depleted - which is to say, missing - from most of Jupiter's atmosphere. Even more puzzling was that the amount of ammonia changes as one moves within Jupiter's atmosphere.

"Previously, scientists realized there were small pockets of missing ammonia, but no one realized how deep these pockets went or that they covered most of Jupiter,"said Scott Bolton, Juno's principal investigator at the Southwest Research Institute in San Antonio. "We were struggling to explain the ammonia depletion with ammonia-water rain alone, but the rain couldn't go deep enough to match the observations. I realized a solid, like a hailstone, might go deeper and take up more ammonia. When Heidi discovered shallow lightning, we realized we had evidence that ammonia mixes with water high in the atmosphere, and thus the lightning was a key piece of the puzzle."

This graphic depicts the evolutionary process of shallow lightning and mushballs on Jupiter.
This graphic depicts the evolutionary process of shallow lightning and mushballs on Jupiter.
Credit: NASA/JPL-Caltech/SwRI/CNRS
Full Image Details

Jovian Mushballs

A second paper, released yesterday in the Journal of Geophysical Research: Planets, envisions the strange brew of 2/3 water and 1/3 ammonia gas that becomes the seed for Jovian hailstones, known as mushballs. Consisting of layers of water-ammonia slush and ice covered by a thicker water-ice crust, mushballs are generated in a similar manner as hail is on Earth - by growing larger as they move up and down through the atmosphere.

"Eventually, the mushballs get so big, even the updrafts can't hold them, and they fall deeper into the atmosphere, encountering even warmer temperatures, where they eventually evaporate completely," said Tristan Guillot, a Juno co-investigator from the Université Côte d'Azur in Nice, France, and lead author of the second paper. "Their action drags ammonia and water down to deep levels in the planet's atmosphere. That explains why we don't see much of it in these places with Juno's Microwave Radiometer."

"Combining these two results was critical to solving the mystery of Jupiter's missing ammonia," said Bolton. "As it turned out, the ammonia isn't actually missing; it is just transported down while in disguise, having cloaked itself by mixing with water. The solution is very simple and elegant with this theory: When the water and ammonia are in a liquid state, they are invisible to us until they reach a depth where they evaporate - and that is quite deep."

Understanding the meteorology of Jupiter enables us to develop theories of atmospheric dynamics for all the planets in our solar system as well as for the exoplanets being discovered outside our solar system. Comparing how violent storms and atmospheric physics work across the solar system allows planetary scientists to test theories under different conditions.

More About the Mission

The solar-powered Jupiter explorer launched nine years ago today, on Aug. 5, 2011. And last month marked the fourth anniversary of its arrival at Jupiter. Since entering the gas giant's orbit, Juno has performed 27 science flybys and logged over 300 million miles (483 million kilometers).

JPL, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA's New Frontiers Program, which is managed at NASA's Marshall Space Flight Center in Huntsville, Alabama, for the agency's Science Mission Directorate in Washington. Lockheed Martin Space in Denver built and operates the spacecraft.

More information about Juno is available at:

https://www.nasa.gov/juno

https://www.missionjuno.swri.edu

Follow the mission on Facebook and Twitter at:

https://www.facebook.com/NASAJuno

https://www.twitter.com/NASAJuno

News Media Contact

DC Agle

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-9011

agle@jpl.nasa.gov

Alana Johnson / Grey Hautaluoma

NASA Headquarters, Washington

202-672-4780 / 202-358-0668

alana.r.johnson@nasa.gov / grey.hautaluoma-1@nasa.gov

Deb Schmid

Southwest Research Institute, San Antonio

210-522-2254

dschmid@swri.org

François Maginiot

French National Centre for Scientific Research, Paris

+33 1 44 96 51 51

presse@cnrs.fr

2020-153

Related News

Solar System .

NASA’s Deep Space Network Welcomes a New Dish to the Family

Mars .

6 Things to Know About NASA’s Mars Helicopter on Its Way to Mars

Mars .

NASA to Host Virtual Briefing on February Perseverance Mars Rover Landing

Mars .

NASA InSight’s ‘Mole’ Ends Its Journey on Mars

Mars .

Mars 2020 Perseverance Rover to Capture Sounds From the Red Planet

Solar System .

NASA’s Juno Mission Expands Into the Future

Mars .

NASA’s Curiosity Rover Reaches Its 3,000th Day on Mars

Mars .

NASA Extends Exploration for Two Planetary Science Missions

Mars .

Celebrate the Perseverance Rover Landing With NASA's Student Challenge

Mars .

7 Things to Know About the NASA Rover About to Land on Mars

Explore More

Image .

Juno's Mission Goes On

Topic .

Solar System

Image .

A Hot Spot on Jupiter

Image .

Jupiter's Storm Oval BA As Viewed By An Artist

Image .

Two Views of Jupiter Hot Spot

Image .

A Jupiter Circumpolar Cyclone

Image .

Jupiter North Pole Detail

Video .

What's Up - January 2021

Image .

All Eight Northern Circumpolar Cyclones in 2020

Image .

Tracking Clouds on Jupiter

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono