JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Mars
.

Science at Sunrise: Solving the Mystery of Frost Hiding on Mars

May 5, 2022
Four Images of Morning Frost on Mars

Martian surface frost, made up largely of carbon dioxide, appears blueish-white in these images from the Thermal Emission Imaging System (THEMIS) camera aboard NASA’s 2001 Odyssey orbiter. THEMIS takes images in both visible light perceptible to the human eye and heat-sensitive infrared.

Credit: NASA/JPL-Caltech/ASU

A new study using data from NASA’s Mars Odyssey orbiter may explain why Martian frost can be invisible to the naked eye and why dust avalanches appear on some slopes.

Scientists were baffled last year when studying images of the Martian surface taken at dawn by NASA’s Mars Odyssey orbiter. When they looked at the surface using visible light – the kind that the human eye perceives – they could see ghostly, blue-white morning frost illuminated by the rising Sun. But using the orbiter’s heat-sensitive camera, the frost appeared more widely, including in areas where none was visible.

The scientists knew they were looking at frost that forms overnight and is made mostly of carbon dioxide – essentially, dry ice, which often appears as frost on the Red Planet rather than as water ice. But why was this dry ice frost visible in some places and not others?

In a paper published last month in the Journal of Geophysical Research: Planets, these scientists proposed a surprising answer that may also explain how dust avalanches, which are reshaping the planet, are triggered after sunrise.

HiRISE Spots Slope Streaks Fanning Out on Mars

These dark streaks, also known as “slope streaks,” resulted from dust avalanches on Mars. The HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter captured them on Dec. 26, 2017.

Credit: NASA/JPL-Caltech/UArizona

From Frost to Vapor

Launched in 2001, Odyssey is NASA’s longest-lived Mars mission and carries the Thermal Emission Imaging System (THEMIS), an infrared, or temperature-sensitive, camera that provides a one-of-a-kind view of the Martian surface. Odyssey’s current orbit provides a unique look at the planet at 7 a.m. local Mars time.

“Odyssey’s morning orbit produces spectacular pictures,” said Sylvain Piqueux of NASA’s Jet Propulsion Laboratory in Southern California, who led the paper. “We can see the long shadows of sunrise as they stretch across the surface.”

Because Mars has so little atmosphere (just 1% the density of Earth’s), the Sun quickly warms frost that builds up overnight. Instead of melting, dry ice vaporizes into the atmosphere within minutes.

Lucas Lange, a JPL intern working with Piqueux, first noticed the cold-temperature signature of frost in many places where it couldn’t be seen on the surface. These temperatures were appearing just tens of microns underground – less than the width of a human hair “below” the surface.

“Our first thought was ice could be buried there,” Lange said. “Dry ice is plentiful near Mars’ poles, but we were looking closer to the equator of the planet, where it’s generally too warm for dry ice frost to form.”

In their paper, the authors propose they were seeing “dirty frost” – dry ice frost mixed with fine grains of dust that obscured it in visible light but not in infrared images.

Thawing Frost and Avalanches

The phenomenon led the scientists to suspect dirty frost might also explain some of the dark streaks that can stretch 3,300 feet (1,000 meters) or more down Martian slopes. They knew the streaks resulted from, essentially, dust avalanches that slowly reshape mountainsides across the planet. Scientists think these dust avalanches probably look something like a ground-hugging river of dust releasing a trail of fluffy material behind. As the dust travels downhill over several hours, it exposes streaks of darker material underneath.

HiRISE Spots Slope Streaks on Mars in Acheron Fossae

These dark streaks, also known as “slope streaks,” resulted from dust avalanches in an area of Mars called Acheron Fossae. The HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter captured them on Dec. 3, 2006.

Credit: NASA/JPL-Caltech/UArizona

These dark streaks are not the same as a better-documented variety called recurring slope lineae, which recur in the same places, season after season, for weeks (instead of hours) at a time. Once thought to result from briny water slowly seeping from mountainsides, recurring slope lineae are now generally believed to result from flows of dry sand or dust.

Mapping the slopes streaks for their recent study, the authors found they tend to appear in places with morning frost. The researchers propose the streaks resulted from the vaporizing frost creating just enough pressure to loosen the dust grains, causing an avalanche.

The hypotheses are further evidence of just how surprising the Red Planet can be.

“Every time we send a mission to Mars, we discover exotic new processes,” said Chris Edwards, a paper co-author at Northern Arizona University in Flagstaff. “We don’t have anything exactly like a slope streak on Earth. You have to think beyond your experiences on Earth to understand Mars.”

Get the Latest JPL News

SUBSCRIBE TO NEWSLETTER

More About the Mission

JPL manages the 2001 Mars Odyssey mission for NASA’s Science Mission Directorate in Washington. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University. The THEMIS investigation is led by Dr. Philip Christensen at ASU. Lockheed Martin Space in Denver is the prime contractor for the Odyssey project and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of Caltech in Pasadena.

For more information:

https://mars.nasa.gov/odyssey

News Media Contact

Andrew Good

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-2433

andrew.c.good@jpl.nasa.gov

Karen Fox / Alana Johnson

NASA Headquarters, Washington

301-286-6284 / 202-358-1501

karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

2022-063

Related News

Mars .

NASA’s Perseverance Rover Completes Mars Sample Depot

Solar System .

NASA’s Juno Team Assessing Camera After 48th Flyby of Jupiter

Solar System .

NASA’s Psyche Mission Continues Preparation for Launch in 2023

Solar System .

NASA’s Lunar Flashlight Team Assessing Spacecraft’s Propulsion System

Mars .

NASA Explores a Winter Wonderland on Mars

Solar System .

Juno Spacecraft Recovering Memory After 47th Flyby of Jupiter

Mars .

NASA Retires InSight Mars Lander Mission After Years of Science

Mars .

NASA’s Perseverance Rover Deposits First Sample on Mars Surface

Solar System .

40-Year Study Finds Mysterious Patterns in Temperatures at Jupiter

Mars .

NASA’s Perseverance Rover to Begin Building Martian Sample Depot

Explore More

Image .

Daedalia Planum

Image .

Daedalia Planum

Image .

Perseverance's Three Forks Sample Depot Map

Image .

Crater Gullies

Image .

WATSON Documents Final Tube Dropped at Three Forks Sample Depot

Image .

Ius Chasma

Image .

Windstreak

Image .

Sirenum Fossae

Image .

Perseverance's Three Forks Sample Depot Selfie

Image .

Claritas Fossae

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018