JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Earth
.

Salt-Seeking Spacecraft Arrives at Launch Site

Mar 31, 2011
Artist's concept of the Aquarius/SAC-D spacecraft, a collaboration between NASA and Argentina's space agency, with participation from Brazil, Canada, France and Italy. Aquarius, the NASA-built primary instrument on the spacecraft, will take NASA's first space-based measurements of ocean surface salinity, a key missing variable in satellite observations of Earth that links ocean circulation, the global balance of freshwater and climate.› Full image and caption
Credit: NASA
Technicians lower the cover over the shipping container holding the international Aquarius/SAC-D spacecraft at Brazil's National Institute for Space Research in Sáo José dos Campos, in preparation for its transport to California's Vandenberg Air Force Base for launch this June.
Credit: NASA/JPL
The Aquarius/SAC-D spacecraft arrives at Vandenberg Air Force Base in California from Sao Jose dos Campos, Brazil, aboard a U.S. Air Force C-17 transport plane. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit.
Credit: NASA/JPL

An international spacecraft that will take NASA's first space-based measurements of ocean surface salinity has arrived at its launch site at Vandenberg Air Force Base in California.

NASA Instrument Will Measure Ocean Surface Salinity

PASADENA, Calif. – An international spacecraft that will take NASA's first space-based measurements of ocean surface salinity has arrived at its launch site at Vandenberg Air Force Base in California. The Aquarius/SAC-D mission will provide scientists with a key missing variable in satellite observations of Earth that links ocean circulation, the global balance of freshwater and climate.

The Aquarius/SAC-D spacecraft left Sáo José dos Campos, Brazil, on March 29. Following final tests, the spacecraft will be attached to a Delta II rocket for a June 9 launch.

The mission is a collaboration between NASA and Argentina's space agency, Comisión Nacional de Actividades Espaciales (CONAE), with participation from Brazil, Canada, France and Italy. Aquarius, the NASA-built primary instrument on CONAE's SAC-D spacecraft, will map global changes in the concentration of dissolved salt at the ocean surface. Measuring salinity is important to understanding how changes in rainfall, evaporation and the melting or freezing of ice influence ocean circulation and are linked to climate changes. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes.

"Just as salt is essential to life as we know it, salinity is crucial to Earth's climate system," said Aquarius Principal Investigator Gary Lagerloef of Earth and Space Research in Seattle. "Very small changes in salinity can have large-scale effects on ocean circulation and the way the ocean moderates our climate. These changes are linked to the movement of water between the ocean, atmosphere and cryosphere."

Aquarius will greatly enhance the quantity of ocean salinity measurements that have been collected from ships, buoys and floats.


"When combined with data from other sensors that measure sea level, ocean color, temperature, winds, rainfall and evaporation, Aquarius' continuous, global salinity data will give scientists a much clearer picture of how the ocean works, how it is linked to climate and how it may respond to climate change," Lagerloef said.

Precise salinity measurements from Aquarius will reveal changes in patterns of global precipitation and evaporation, and show how these affect ocean circulation. Studies from Aquarius eventually will improve computer models used to forecast future climate conditions, including short-term climate events such as El Niño and La Niña.

"The mission continues a long and successful partnership between NASA and CONAE, and it will provide a new type of ocean observation for ocean and climate studies," said Amit Sen, Aquarius project manager at NASA's Jet Propulsion Laboratory in Pasadena, Calif.

Aquarius will measure ocean surface salinity by sensing thermal microwave emissions from the water's surface with a radiometer. When other environmental factors are equal, these emissions indicate how salty the surface water is. Because salinity levels in the open ocean vary by only about five parts per thousand, Aquarius employs new technologies to detect changes in salinity as small as about two parts per 10,000, equivalent to about one-eighth of a teaspoon of salt in a gallon of water.

Flying in a 657-kilometer (408-mile) high, polar orbit, Aquarius/SAC-D will map the global ocean once every seven days. Its measurements will be merged to yield monthly estimates of ocean surface salinity with a spatial resolution of 150 kilometers (93 miles). The data will reveal how salinity changes over time and from one part of the ocean to another.

Aquarius is a NASA Earth System Science Pathfinder Program mission. The Aquarius instrument was jointly built by JPL and NASA's Goddard Space Flight Center in Greenbelt, Md. NASA's Launch Services Program at the Kennedy Space Center in Florida is managing the launch. JPL will manage Aquarius through the mission's commissioning phase and archive mission data. Goddard will manage the mission's operations phase and process Aquarius science data.

CONAE is providing the SAC-D spacecraft, an optical camera, a thermal camera in collaboration with Canada, a microwave radiometer, sensors developed by various Argentine institutions, and the mission operations center in Argentina. France and Italy also are contributing instruments.

For more information on Aquarius, visit: http://aquarius.nasa.gov and http://www.conae.gov.ar/eng/principal.html .

JPL is managed for NASA by the California Institute of Technology in Pasadena.

News Media Contact

Alan Buis

818-354-0474

alan.buis@jpl.nasa.gov

Steve Cole

202-358-0918

stephen.e.cole@nasa.gov

2011-103

Related News

Climate Change .

Warming Seas Are Accelerating Greenland’s Glacier Retreat

Earth .

NASA, US and European Partner Satellite Returns First Sea Level Measurements

Technology .

NASA Confirms New SIMPLEx Mission Small Satellite to Blaze Trails Studying Lunar Surface

Earth .

New Data Confirm 2020 SO to Be the Upper Centaur Rocket Booster From the 1960's

Earth .

Follow Sentinel-6 Michael Freilich in Real Time As It Orbits Earth

Climate Change .

US-European Mission Launches to Monitor the World's Oceans

Climate Change .

Sentinel-6 Michael Freilich Satellite Prepared for Launch

Climate Change .

Study: Urban Greenery Plays a Surprising Role in Greenhouse Gas Emissions

Climate Change .

NASA TV to Air Sentinel-6 Michael Freilich Launch, Prelaunch Activities

Earth .

Earth May Have Captured a 1960s-Era Rocket Booster

Explore More

Image .

Glacier Undercutting in Action

Image .

Hulhumale, Maldives

Topic .

Earth

Image .

Kilauea Volcano, Hawaii

Infographic .

Inside Hurrricanes

Image .

Mt. Etna, Italy

Image .

Sentinel-6 Michael Freilich First Light Waveform

Image .

Sentinel-6 Michael Freilich First Light Sea Level

Image .

Providencia Island, Colombia

Image .

Kliuchevskoi Volcano, Kamchatka, Russia

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono