JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

NASA’s Europa Probe Gets a Hotline to Earth

Aug. 15, 2023

Engineers and technicians install Europa Clipper’s high-gain antenna in the main clean room at JPL.

Credit: NASA/JPL-Caltech
Full Image Details

The addition of a high-gain antenna will enable the agency’s Europa Clipper spacecraft – set to launch in October 2024 – to communicate with mission controllers hundreds of millions of miles away.

NASA’s Europa Clipper is designed to seek out conditions suitable for life on an ice-covered moon of Jupiter. On Aug. 14, the spacecraft received a piece of hardware central to that quest: the massive dish-shaped high-gain antenna.

Stretching 10 feet (3 meters) across the spacecraft’s body, the high-gain antenna is the largest and most prominent of a suite of antennas on Europa Clipper. The spacecraft will need it as it investigates the ice-cloaked moon that it’s named after, Europa, some 444 million miles (715 million kilometers) from Earth. A major mission goal is to learn more about the moon’s subsurface ocean, which might harbor a habitable environment.

Watch as Europa Clipper team members lift and install the spacecraft’s large, dish-shaped high-gain antenna in the main clean room at NASA’s Jet Propulsion Laboratory.

Credit: NASA/JPL-Caltech

Once the spacecraft reaches Jupiter, the antenna’s radio beam will be narrowly directed toward Earth. Creating that narrow, concentrated beam is what high-gain antennas are all about. The name refers to the antenna’s ability to focus power, allowing the spacecraft to transmit high-powered signals back to NASA’s Deep Space Network on Earth. That will mean a torrent of science data at a high rate of transmission.

The precision-engineered dish was attached to the spacecraft in carefully choreographed stages over the course of several hours in a Spacecraft Assembly Facility bay at NASA’s Jet Propulsion Laboratory in Southern California. “The antenna has successfully completed all of its stand-alone testing,” said Matthew Bray a few days before the antenna was installed. “As the spacecraft completes its final testing, radio signals will be looped back through the antenna via a special cap, verifying that the telecom signal paths are functional.”

Engineers and technicians use a crane to lift a 10-foot (3-meter) high-gain antenna as they prepare to install it on NASA’s Europa Clipper spacecraft. The orbiter is being assembled in the clean room of High Bay 1 at JPL in preparation for its October 2024.

Credit: NASA/JPL-Caltech
Full Image Details

Based at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, Bray is the designer and lead engineer for the high-gain antenna, which he began working on 2014. It’s been quite a journey for Bray, and for the antenna.

Just over the past year, he’s seen the antenna crisscross the country in the lead-up to the installation. Its ability to beam data precisely was tested twice in 2022 at NASA’s Langley Research Center in Hampton, Virginia. Between those two visits, the antenna made a stop at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for vibration and thermal vacuum testing to see if it could handle the shaking of launch and the extreme temperatures of outer space.

Then it was on to JPL in October 2022 for installation on the spacecraft in preparation for shipment next year to NASA’s Kennedy Space Center in Florida.

The long journey to Jupiter begins with launch from Kennedy in October 2024.

Europa in Their Sights

“The high-gain antenna is a critical piece in the buildup of Europa Clipper,” said Jordan Evans, the Clipper project manager at JPL. “It represents a very visible piece of hardware that provides the capability that the spacecraft needs to send the science data back from Europa. Not only does it look like a spacecraft now that it has the big antenna, but it’s ready for its upcoming critical tests as we progress towards launch.”

The spacecraft will train nine science instruments on Europa, all producing large amounts of rich data: high-resolution color and stereo images to study its geology and surface; thermal images in infrared light to find warmer areas where water could be near the surface; reflected infrared light to map ices, salts, and organics; and ultraviolet light readings to help determine the makeup of atmospheric gases and surface materials.

Clipper will bounce ice-penetrating radar off the subsurface ocean to determine its depth, as well as the thickness of the ice crust above it. A magnetometer will measure the moon’s magnetic field to confirm the deep ocean’s existence and the thickness of the ice.

Click on this interactive visualization of Jupiter’s moon Europa and take it for a spin. The “HD” button offers more detailed textures. The full interactive experience is at Eyes on the Solar System.

The high-gain antenna will stream most of that data back to Earth over the course of 33 to 52 minutes. The strength of the signal and the amount of data it can send at one time will be far greater than that of NASA’s Galileo probe, which ended its eight-year Jupiter mission in 2003.

On site at JPL for the antenna installation was Simmie Berman, the radio frequency module manager at APL. Like Bray, she began her work on the antenna in 2014. The radio frequency module includes the spacecraft’s entire telecommunications subsystem and a total of seven antennas, the high-gain among them. Her job during installation was to ensure the antenna was properly mounted to the spacecraft and that the components are correctly oriented and well integrated.

Get the Latest JPL News

Subscribe to the Newsletter

While the engineers at both APL and JPL have practiced the installation many times, virtually and with real-world mock-ups, Aug. 14 was the first time the high-gain antenna was attached to the spacecraft.

“I’ve never worked on anything of this magnitude, in terms of physical size and also in terms of just general interest,” she said. “Little kids know where Jupiter is. They know what Europa looks like. It’s supercool to get to work on something that has the potential for such a big impact, in terms of knowledge, for humanity.”

After completing this major milestone, Europa Clipper still has a few more steps and a few more tests ahead as it’s prepared for its trip to the outer solar system.

More About the Mission

Europa Clipper’s main science goal is to determine whether there are places below Jupiter’s icy moon, Europa, that could support life. The mission’s three main science objectives are to determine the thickness of the moon’s icy shell and its surface interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.”

More information about Europa can be found here:

europa.nasa.gov

News Media Contact

Gretchen McCartney

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-6215

gretchen.p.mccartney@jpl.nasa.gov

Karen Fox / Alana Johnson

NASA Headquarters, Washington

301-286-6284 / 202-358-1501

karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

2023-120

Related News

Mars .

Historic Wind Tunnel Facility Testing NASA’s Mars Ascent Vehicle Rocket

Mars .

Autonomous Systems Help NASA’s Perseverance Do More Science on Mars

Mars .

NASA Releases Independent Review’s Mars Sample Return Report

Solar System .

Venus on Earth: NASA’s VERITAS Science Team Studies Volcanic Iceland

Mars .

NASA’s Curiosity Reaches Mars Ridge Where Water Left Debris Pileup

Technology .

NASA to Discuss Optical Communications Demo Riding With Psyche

Solar System .

NASA’s Psyche Mission on Track for Liftoff Next Month

Mars .

NASA’s Oxygen-Generating Experiment MOXIE Completes Mars Mission

Solar System .

NASA to Discuss Psyche Asteroid Mission, Optical Communications Demo

Asteroids and Comets .

New Video Series Reveals What Drives NASA’s Psyche Mission Team

Explore More

Image .

Curiosity's Path to Gediz Vallis Ridge and Beyond

Image .

Curiosity Views Gediz Vallis Ridge

Image .

Rendering Depicts Curiosity at Gediz Vallis Ridge

QUIZZES .

Space Trivia

Image .

A Portrait of Planet and Moon: NASA's Juno Mission Captures Jupiter and Io Together

Event Sept. 21, 2023 .

Solar Eclipses: Your Guide to the 2023/2024 Celestial Events

Event Aug. 24, 2023 .

SunRISE: Studying Space Weather with SmallSats

Image .

NASA's Lunar Trailblazer Gets a Taste of Space

Image .

Europa Clipper's High-Gain Antenna Installed

Image .

Powerful Antenna Installed On Europa Clipper

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
JPL Plan: 2023-2026
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018