JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

NASA Orbiter Reveals Big Changes in Mars' Atmosphere

Apr 21, 2011
A newly found, buried deposit of frozen carbon dioxide -- dry ice -- near the south pole of Mars contains about 30 times more carbon dioxide than previously estimated to be frozen near the pole. › Full image and caption
This cross-section view of underground layers near Mars' south pole is a radargram based on data from the Shallow Subsurface Radar (SHARAD) instrument on NASA's Mars Reconnaissance Orbiter.› Full image and caption
Credit: NASA/JPL-Caltech/Sapienza University of Rome/Southwest Research Institute
These images from orbit show an area near Mars' south pole where coalescing or elongated pits are interpreted as signs that an underlying deposit of frozen carbon dioxide.› Full image and caption
Credit: NASA/JPL-Caltech/Univ. of Arizona

NASA's Mars Reconnaissance Orbiter has discovered the total amount of atmosphere on Mars changes dramatically as the tilt of the planet's axis varies.

PASADENA, Calif. -- NASA's Mars Reconnaissance Orbiter has discovered the total amount of atmosphere on Mars changes dramatically as the tilt of the planet's axis varies. This process can affect the stability of liquid water, if it exists on the Martian surface, and increase the frequency and severity of Martian dust storms.

Researchers using the orbiter's ground-penetrating radar identified a large, buried deposit of frozen carbon dioxide, or dry ice, at the Red Planet's south pole. The scientists suspect that much of this carbon dioxide enters the planet's atmosphere and swells the atmosphere's mass when Mars' tilt increases. The findings are published in this week's issue of the journal Science.

The newly found deposit has a volume similar to Lake Superior's nearly 3,000 cubic miles (about 12,000 cubic kilometers). The deposit holds up to 80 percent as much carbon dioxide as today's Martian atmosphere. Collapse pits caused by dry ice sublimation and other clues suggest the deposit is in a dissipating phase, adding gas to the atmosphere each year. Mars' atmosphere is about 95 percent carbon dioxide, in contrast to Earth's much thicker atmosphere, which is less than .04 percent carbon dioxide.

"We already knew there is a small perennial cap of carbon-dioxide ice on top of the water ice there, but this buried deposit has about 30 times more dry ice than previously estimated," said Roger Phillips of Southwest Research Institute in Boulder, Colo. Phillips is deputy team leader for the Mars Reconnaissance Orbiter's Shallow Radar instrument and lead author of the report.

"We identified the deposit as dry ice by determining the radar signature fit the radio-wave transmission characteristics of frozen carbon dioxide far better than the characteristics of frozen water," said Roberto Seu of Sapienza University of Rome, team leader for the Shallow Radar and a co-author of the new report. Additional evidence came from correlating the deposit to visible sublimation features typical of dry ice.

"When you include this buried deposit, Martian carbon dioxide right now is roughly half frozen and half in the atmosphere, but at other times it can be nearly all frozen or nearly all in the atmosphere," Phillips said.

An occasional increase in the atmosphere would strengthen winds, lofting more dust and leading to more frequent and more intense dust storms. Another result is an expanded area on the planet's surface where liquid water could persist without boiling. Modeling based on known variation in the tilt of Mars' axis suggests several-fold changes in the total mass of the planet's atmosphere can happen on time frames of 100,000 years or less.

The changes in atmospheric density caused by the carbon-dioxide increase also would amplify some effects of the changes caused by the tilt. Researchers plugged the mass of the buried carbon-dioxide deposit into climate models for the period when Mars' tilt and orbital properties maximize the amount of summer sunshine hitting the south pole. They found at such times, global, year-round average air pressure is approximately 75 percent greater than the current level.

"A tilted Mars with a thicker carbon-dioxide atmosphere causes a greenhouse effect that tries to warm the Martian surface, while thicker and longer-lived polar ice caps try to cool it," said co-author Robert Haberle, a planetary scientist at NASA's Ames Research Center in Moffett Field, Calif. "Our simulations show the polar caps cool more than the greenhouse warms. Unlike Earth, which has a thick, moist atmosphere that produces a strong greenhouse effect, Mars' atmosphere is too thin and dry to produce as strong a greenhouse effect as Earth's, even when you double its carbon-dioxide content."

The Shallow Radar, one of the Mars Reconnaissance Orbiter's six instruments, was provided by the Italian Space Agency, and its operations are led by the Department of Information Engineering, Electronics and Telecommunications at Sapienza University of Rome. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter project for NASA's Science Mission Directorate at the agency's headquarters in Washington. Lockheed Martin Space Systems in Denver built the spacecraft.

For more information about the Mars Reconnaissance Orbiter mission, visit http://www.nasa.gov/mro .

News Media Contact

Guy Webster

818-354-6278

guy.webster@jpl.nasa.gov

Maria Martinez

(210) 522-3305

Dwayne Brown

202-358-1726

dwayne.c.brown@nasa.gov

2011-123

Related News

Mars .

NASA’s Perseverance Mars Rover Extracts First Oxygen From Red Planet

Mars .

NASA’s Ingenuity Mars Helicopter Succeeds in Historic First Flight

Mars .

NASA to Attempt First Controlled Flight on Mars As Soon As Monday

Mars .

NASA’s Mars Helicopter to Make First Flight Attempt

Mars .

NASA’s Odyssey Orbiter Marks 20 Historic Years of Mapping Mars

Solar System .

Probing for Life in the Icy Crusts of Ocean Worlds

Mars .

NASA’s First Weather Report From Jezero Crater on Mars

Mars .

NASA Invites Public to Take Flight With Ingenuity Mars Helicopter

Mars .

NASA’s Mars Helicopter Survives First Cold Martian Night on Its Own

Mars .

Sensors Collect Crucial Data on Mars Landings With Arrival of Perseverance

Explore More

Image .

Apollo Footprint

Image .

Goldstone Radar Observations of Asteroid 2001 FO32

Video .

What's Up - April 2021

Image .

Europa Clipper's Europa Imaging System in the Works

Image .

Europa Clipper REASON Testing on the Mesa

Image .

Europa Imaging System Narrow Angle Camera

Image .

Europa Imaging System Wide Angle Camera

Image .

Faraday Cups Up Close: NASA's Europa Clipper

Image .

Preparing NASA's Europa Clipper's Plasma Instrument

Image .

Europa Clipper's Thermal Tubing

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Visions of the Future
Slice of History
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Universe Newsletter
Social Media
RSS
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono