JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Earth
.

NASA Goes Inside a Volcano, Monitors Activity

Aug 07, 2009
A sensor like this is being placed inside and around the mouth of Mount St. Helens. One day it may be used to respond rapidly to an impending eruption.

Scientists have placed high-tech "spiders" inside and around the mouth of Mount St. Helens, the site of the most active volcano in the United States.

PASADENA, Calif. -- Scientists have placed high-tech "spiders" inside and around the mouth of Mount St. Helens, one of the most active volcanoes in the United States. Networks such as these could one day be used to respond rapidly to an impending eruption.

On July 14, 2009, these spider pods were lowered by cable from a helicopter hovering about 100 feet up (30 meters) and gently put in hot spots inside and around the volcano crater.

"This project demonstrates that a low-cost sensor network system can support real-time monitoring in extremely challenging environments," said WenZhan Song of Washington State University Vancouver. Song is the principal investigator for this NASA-funded technology research project, which also draws on participation from the U.S. Geological Survey and from NASA's Jet Propulsion Laboratory, Pasadena, Calif.

These robotic emissaries were built to go where no human can and operate in extreme temperatures and treacherous terrain. Fifteen pods form a virtual wireless network, communicating with each other and the Earth Observing-1 (EO-1) satellite, operated by NASA's Goddard Space Flight Center, in Greenbelt, Md.

"Taking data from the ground onsite and from above by satellite gives you a great picture of what is going on inside the volcano," said Steve Chien, principal scientist for autonomous systems at JPL.

Each pod contains a seismometer to detect earthquakes; a GPS receiver to pinpoint the exact location and measure subtle ground deformation; an infrared sounder to sense volcanic explosions; and a lightning detector to search for ash cloud formation. The main instrument box is the size and shape of a microwave oven. It sits on top of a three-legged tripod, which is why scientists call them spiders. The pods are powered by batteries that can last for at least a year.

"With these high-tech instruments, we can rapidly respond during periods of volcanic unrest to supplement our permanent monitoring network or quickly replace damaged stations without excessive exposure to personnel," said Rick LaHusen, an instrumentation engineer with the U.S. Geological Survey's Cascades Volcano Observatory, Vancouver, Wash.

In 1980, a tremendous eruption at Mount St. Helens caused considerable loss of life and damage. More recently, in 2004, the volcano came back to life and erupted more than 100 million cubic meters (26 billion gallons) of lava, accompanied by a series of explosions that hurled rock and ash far from the vent. If eruptions like these ever occur again, a sensor network could be quickly put in place to provide valuable real-time information to scientists and emergency services.

This work is part of NASA's plan to develop a sensor web to provide timely data and analyses for scientific research, natural hazard mitigation, and the exploration of other planets in this solar system and beyond.

"We hope this network will provide a blueprint for future networks to be installed on many of the world's unmonitored active volcanoes, so educated and reliable estimates can be made when a town or a village needs to be evacuated to reduce the risk to life and property," said Project Manager Sharon Kedar (shah-RONE keh-DARR) of JPL.

Chien said, "Hostile environments like Mount St. Helens are proving grounds for future space missions, such as to Mars, where we may someday have similar sensor networks to track a meteor strike, dust storm or Mars quake, as a virtual scientist on the ground."

Song said, "The design and deployment experiences will help us understand challenging environments and inspire new discoveries."

A team of engineers, students, volcanologists and geologists put the system together. The team includes the U.S. Geological Survey's Cascades Volcano Observatory staff, who designed and built the "spider" hardware; Washington State University in Vancouver, where the sensor network software was written; and NASA, which developed software to make the spiders able to detect events to trigger space observations by the EO-1 satellite.

For more information on Volcano sensor networks see: http://ai.jpl.nasa.gov/public/projects/sensorweb/ .

The work is funded by NASA's Earth Science Technology Office through the Advanced Information System Technology program and also by the USGS Volcano Hazards Program. JPL is managed for NASA by the California Institute of Technology in Pasadena.
› Video: Space Age Volcano Monitoring Network
› More information on Volcano sensor networks

News Media Contact

Carolina Martinez/Guy Webster

818-354-9382/354-6278

carolina.martinez@jpl.nasa.gov/ guy.webster@jpl.nasa.gov

2009-117

Related News

Climate Change .

Warming Seas Are Accelerating Greenland’s Glacier Retreat

Earth .

NASA, US and European Partner Satellite Returns First Sea Level Measurements

Technology .

NASA Confirms New SIMPLEx Mission Small Satellite to Blaze Trails Studying Lunar Surface

Earth .

New Data Confirm 2020 SO to Be the Upper Centaur Rocket Booster From the 1960's

Earth .

Follow Sentinel-6 Michael Freilich in Real Time As It Orbits Earth

Climate Change .

US-European Mission Launches to Monitor the World's Oceans

Climate Change .

Sentinel-6 Michael Freilich Satellite Prepared for Launch

Climate Change .

Study: Urban Greenery Plays a Surprising Role in Greenhouse Gas Emissions

Climate Change .

NASA TV to Air Sentinel-6 Michael Freilich Launch, Prelaunch Activities

Earth .

Earth May Have Captured a 1960s-Era Rocket Booster

Explore More

Image .

Lake Salda Rocks

Image .

Lake Salda Beach

Image .

Serabit el-Khadim, Egypt

Image .

Glacier Undercutting in Action

Image .

Hulhumale, Maldives

Topic .

Earth

Image .

Kilauea Volcano, Hawaii

Infographic .

Inside Hurrricanes

Image .

Mt. Etna, Italy

Image .

Sentinel-6 Michael Freilich First Light Waveform

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono