JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Earth
.

NASA Finds Reducing Salt Is Bad for Glacial Health

Dec 05, 2013
This image shows the Totten Glacier ice shelf in East Antarctica (the wrinkled white area at top left) on Sept. 25, 2013. Two large open-water polynyas appear on the sea ice below and to the right of the shelf, as well as several smaller ones. The open-water areas are bright black. The stippled diagonal line from lower left to upper right is the outer edge of the sea ice, with cloud cover to the right of that line. The image is from the Moderate Resolution Imaging Spectroradiometer instrument on NASA's Aqua satellite.
Credit: NASA. |

A NASA-led study has discovered a link between sea ice conditions and the melting rate of Totten Glacier in East Antarctica that has implications for sea-level rise.

A new NASA-led study has discovered an intriguing link between sea ice conditions and the melting rate of Totten Glacier, the glacier in East Antarctica that discharges the most ice into the ocean. The discovery, involving cold, extra salty water - brine - that forms within openings in sea ice, adds to our understanding of how ice sheets interact with the ocean, and may improve our ability to forecast and prepare for future sea level rise.

"I was curious why Totten was changing so fast when the glacier just next to it wasn't changing much," said Ala Khazender of NASA's Jet Propulsion Laboratory, Pasadena, Calif., lead author of the new study, published online Dec. 5 in the journal Nature Communications. Combining satellite observations with ocean numerical modeling, Khazender and his colleagues developed a hypothesis that reductions in the volume of brine would increase Totten's thinning and melting. Additional research supported that hypothesis.

Ice loss seen in Antarctica is generally attributed to the well-documented rise in temperature of the surrounding ocean, but scientists are still puzzling out the mechanisms behind the regional variations that they are observing. The new study highlights the key role of processes occurring on small geographic scales in determining how global climate change can affect the stability of ice sheets.

Satellite observations from NASA's ICESat-1, which measures how much ice surfaces are rising or falling over time, revealed that Totten Glacier was thinning rapidly. It currently discharges enough ice into the surrounding ocean to fill Lake Erie in just over a week. The nearby Moscow University Glacier and its floating ice shelf were showing little change. Why the difference? "We were convinced that the answer must be in the ocean," Khazender said.

The ocean around Antarctica is warmer than both the continent's icy surface and the polar air. Ice shelves (the floating front edges of glaciers that extend tens to hundreds of miles offshore) melt more because of contact with ocean water below them than they do because of sunlight. Melting at the undersides of ice shelves is part of Antarctica's natural water cycle, but when glaciers start melting unusually quickly, it's a sign that something is off balance.

Khazender and his team of colleagues from JPL; UCLA; the University of California, Irvine; and Utrecht University in the Netherlands combined ICESat remote sensing observations from 2003 to 2008 with ocean numerical computer models to seek insights into the interaction between the ice shelves and their ocean basin.

That ocean basin, as elsewhere around Antarctica, contains polynyas (poe-LEEN-yahs), large, annually recurring openings in the winter sea ice cover. Polynya sizes and numbers vary markedly from winter to winter, although there is no overall trend in this region. The computer simulations revealed that these year-to-year variations in the polynyas greatly affected the glacier's melting rate.

In polynyas, large quantities of sea ice form, only to be swept away by the winds that formed the openings in the first place. When seawater freezes it expels its salts, producing a layer of very dense, briny water at the freezing temperature. The cold and dense brine formed in polynyas sinks to the seafloor, where it can flow into the cavities under the ice shelves, just as warmer ocean water could.

The researchers hypothesized that when the cold brine pooled under Totten Ice Shelf, it mixed with the water there, lowering its temperature and slowing the glacier's winter melt rate. If so, a reduction in cold brine would mean the glacier's winter melt rate would increase.

The team then examined a data set of passive microwave measurements from the Defense Meteorological Satellite Program. These showed that in the latter part of the study period, the extent of polynyas (and therefore the production of cold brine) decreased significantly. ICESat observations showed that at the same time, the thinning of Totten Glacier increased, as the team's hypothesis predicted it would.

If there are more winters with reduced polynya extents, Khazender points out, the cavity under Totten can fill with warmer ocean water rather than cold brine. "If that happens, the glacier's flow could be significantly destabilized, causing it to discharge even more ice into the ocean," he said.

"With the widespread changes seen in Antarctic sea ice conditions over the last few years, this process could be affecting other glaciers around Antarctica and the volume of ice they discharge into the ocean," he added.

For more information on ICESat, visit: http://icesat.gsfc.nasa.gov/ .For more information on the ECCO2 ocean modeling and data synthesis project, visit: http://ecco2.jpl.nasa.gov/ .

News Media Contact

Written by Carol Rasmussen

Alan Buis

818-354-0474

alan.buis@jpl.nasa.gov

2013-352

Related News

Weather .

A Pioneering NASA Mini Weather Satellite Ends Its Mission

Climate Change .

NASA Satellites Help Quantify Forests’ Impacts on the Global Carbon Budget

Mars .

NASA’s Perseverance Pays Off Back Home

Climate Change .

Warming Seas Are Accelerating Greenland’s Glacier Retreat

Earth .

NASA, US and European Partner Satellite Returns First Sea Level Measurements

Technology .

NASA Confirms New SIMPLEx Mission Small Satellite to Blaze Trails Studying Lunar Surface

Earth .

New Data Confirm 2020 SO to Be the Upper Centaur Rocket Booster From the 1960's

Earth .

Follow Sentinel-6 Michael Freilich in Real Time As It Orbits Earth

Climate Change .

US-European Mission Launches to Monitor the World's Oceans

Climate Change .

Sentinel-6 Michael Freilich Satellite Prepared for Launch

Explore More

Image .

Mt. Etna--February 26, 2021

Image .

Mt. Etna February 2021

Image .

Tumbiana Stromatolite

Image .

Banjul, The Gambia

Image .

Lake Salda Rocks

Image .

Lake Salda Beach

Image .

Serabit el-Khadim, Egypt

Image .

Glacier Undercutting in Action

Image .

Hulhumale, Maldives

Topic .

Earth

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Visions of the Future
Slice of History
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Universe Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono