JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Earth
.

NASA Data Reveal Major Groundwater Loss in California

Dec 14, 2009
Grace observed trends in groundwater levels, October, 2003 – March, 2009› Full image and caption
Credit: University Of California Center For Hydrologic Modeling | |
The combined Sacramento and San Joaquin River Basins cover an area of approximately 154,000 square kilometers. Grace observed trends in groundwater levels, October, 2003 – March, 2009› Full image and caption
Credit: University Of California Center For Hydrologic Modeling
Trends in surface mass variations as observed by the GRACE mission over the period 2003 to 2009. The bluer tones indicate areas of mass loss, while warmer red tones indicate mass gains. Units are centimeters of equivalent surface water. Grace observed trends in groundwater levels, October, 2003 – March, 2009› Full image and caption
Credit: University Of California Center For Hydrologic Modeling

NASA data show California's primary agricultural area and major mountain water source lost nearly enough groundwater since fall 2003 to fill America's largest reservoir.

PASADENA, Calif. – New space observations reveal that since October 2003, the aquifers for California's primary agricultural region -- the Central Valley -- and its major mountain water source -- the Sierra Nevadas -- have lost nearly enough water combined to fill Lake Mead, America's largest reservoir. The findings, based on data from the NASA/German Aerospace Center Gravity Recovery and Climate Experiment (Grace), reflect California's extended drought and increased rates of groundwater being pumped for human uses, such as irrigation.

In research being presented this week at the American Geophysical Union meeting in San Francisco, scientists from NASA and the University of California, Irvine, detailed California's groundwater changes and outlined Grace-based research on other global aquifers. The twin Grace satellites monitor tiny month-to-month changes in Earth's gravity field primarily caused by the movement of water in Earth's land, ocean, ice and atmosphere reservoirs. Grace's ability to directly 'weigh' changes in water content provides new insights into how Earth's water cycle may be changing.

Combined, California's Sacramento and San Joaquin drainage basins have shed more than 30 cubic kilometers of water since late 2003, said professor Jay Famiglietti of the University of California, Irvine. A cubic kilometer is about 264.2 billion gallons, enough to fill 400,000 Olympic-size pools. The bulk of the loss occurred in California's agricultural Central Valley. The Central Valley receives its irrigation from a combination of groundwater pumped from wells and surface water diverted from elsewhere.

"Grace data reveal groundwater in these basins is being pumped for irrigation at rates that are not sustainable if current trends continue," Famiglietti said. "This is leading to declining water tables, water shortages, decreasing crop sizes and continued land subsidence. The findings have major implications for the U.S. economy, as California's Central Valley is home to one sixth of all U.S. irrigated land, and the state leads the nation in agricultural production and exports."

"By providing data on large-scale groundwater depletion rates, Grace can help California water managers make informed decisions about allocating water resources," said Grace Project Scientist Michael Watkins of NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the mission for NASA's Science Mission Directorate, Washington.

Preliminary studies show most of the water loss is coming from the more southerly located San Joaquin basin, which gets less precipitation than the Sacramento River basin farther north. Initial results suggest the Sacramento River basin is losing about 2 cubic kilometers of water a year. Surface water losses account for half of this, while groundwater losses in the northern Central Valley add another 0.6 cubic kilometers annually. The San Joaquin Basin is losing 3.5 cubic kilometers a year. Of this, more than 75 percent is the result of groundwater pumping in the southern Central Valley, primarily to irrigate crops.

Famiglietti said recent California legislation decreasing the allocation of surface waters to the San Joaquin Basin is likely to further increase the region's reliance on groundwater for irrigation. "This suggests the decreasing groundwater storage trends seen by Grace will continue for the foreseeable future," he said.
The California results come just months after a team of hydrologists led by Matt Rodell of NASA's Goddard Space Flight Center, Greenbelt, Md., found groundwater levels in northwest India have declined by 17.7 cubic kilometers per year over the past decade, a loss due almost entirely to pumping and consumption of groundwater by humans.

"California and India are just two of many regions around the world where Grace data are being used to study droughts, which can have devastating impacts on societies and cost the U.S. economy $6 to $8 billion annually," said Rodell. Other regions under study include Australia, the Middle East – North Africa region and the southeastern United States, where Grace clearly captured the evolution of an extended drought that ended this spring. In the Middle East – North Africa region, Rodell is leading an effort to use Grace and other data to systematically map water- and weather-related variables to help assess regional water resources. Rodell added Grace may also help predict droughts, since it can identify pre-existing conditions favorable to the start of a drought, such as a deficit of water deep below the ground.

NASA is working with the National Oceanic and Atmospheric Administration and the University of Nebraska-Lincoln to incorporate Grace data into NOAA's U.S. and North American Drought Monitors, premier tools used to minimize drought impacts. The tools rely heavily on precipitation observations, but are limited by inadequate large-scale observations of soil moisture and groundwater levels. "Grace is the only satellite system that provides information on these deeper stores of water that are key indicators of long-term drought," Rodell said.
Grace is a partnership of NASA and the German Aerospace Center (DLR). The University of Texas Center for Space Research, Austin, has overall mission responsibility. JPL developed the satellites. DLR provided the launch, and GeoForschungsZentrum Potsdam, Germany, operates the mission. For more on Grace, see http://www.csr.utexas.edu/grace/ and  http://grace.jpl.nasa.gov/ . Other media contacts: Margaret Baguio, University of Texas Center for Space Research, 512-471-6922; Jennifer Fitzenberger, University of California, Irvine, 949-824-3969.

JPL is managed for NASA by the California Institute of Technology in Pasadena.

› All related images

News Media Contact

Alan Buis

818-354-0474

alan.buis@jpl.nasa.gov

2009-194

Related News

Climate Change .

Warming Seas Are Accelerating Greenland’s Glacier Retreat

Earth .

NASA, US and European Partner Satellite Returns First Sea Level Measurements

Technology .

NASA Confirms New SIMPLEx Mission Small Satellite to Blaze Trails Studying Lunar Surface

Earth .

New Data Confirm 2020 SO to Be the Upper Centaur Rocket Booster From the 1960's

Earth .

Follow Sentinel-6 Michael Freilich in Real Time As It Orbits Earth

Climate Change .

US-European Mission Launches to Monitor the World's Oceans

Climate Change .

Sentinel-6 Michael Freilich Satellite Prepared for Launch

Climate Change .

Study: Urban Greenery Plays a Surprising Role in Greenhouse Gas Emissions

Climate Change .

NASA TV to Air Sentinel-6 Michael Freilich Launch, Prelaunch Activities

Earth .

Earth May Have Captured a 1960s-Era Rocket Booster

Explore More

Image .

Lake Salda Rocks

Image .

Lake Salda Beach

Image .

Serabit el-Khadim, Egypt

Image .

Glacier Undercutting in Action

Image .

Hulhumale, Maldives

Topic .

Earth

Image .

Kilauea Volcano, Hawaii

Infographic .

Inside Hurrricanes

Image .

Mt. Etna, Italy

Image .

Sentinel-6 Michael Freilich First Light Waveform

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono