JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Earth
.

Methane ‘Super-Emitters’ Mapped by NASA’s New Earth Space Mission

Oct. 25, 2022

This image shows a methane plume 2 miles (3 kilometers) long that NASA’s Earth Surface Mineral Dust Source Investigation mission detected southeast of Carlsbad, New Mexico. Methane is a potent greenhouse gas that is much more effective at trapping heat in the atmosphere than carbon dioxide.

Credit: NASA/JPL-Caltech

East of Hazar, Turkmenistan, a port city on the Caspian Sea, 12 plumes of methane stream westward. The plumes were detected by NASA’s Earth Surface Mineral Dust Source Investigation mission and some of them stretch for more than 20 miles (32 kilometers).

Credit: NASA/JPL-Caltech

A methane plume at least 3 miles (4.8 kilometers) long billows into the atmosphere south of Tehran, Iran. The plume, detected by NASA’s Earth Surface Mineral Dust Source Investigation mission, comes from a major landfill, where methane is a byproduct of decomposition.

Credit: NASA/JPL-Caltech

Built to help scientists understand how dust affects climate, the Earth Surface Mineral Dust Source Investigation can also pinpoint emissions of the potent greenhouse gas.

NASA’s Earth Surface Mineral Dust Source Investigation (EMIT) mission is mapping the prevalence of key minerals in the planet’s dust-producing deserts – information that will advance our understanding of airborne dust’s effects on climate. But EMIT has demonstrated another crucial capability: detecting the presence of methane, a potent greenhouse gas.

In the data EMIT has collected since being installed on the International Space Station in July, the science team has identified more than 50 “super-emitters” in Central Asia, the Middle East, and the Southwestern United States. Super-emitters are facilities, equipment, and other infrastructure, typically in the fossil-fuel, waste, or agriculture sectors, that emit methane at high rates.

“Reining in methane emissions is key to limiting global warming. This exciting new development will not only help researchers better pinpoint where methane leaks are coming from, but also provide insight on how they can be addressed – quickly,” said NASA Administrator Bill Nelson. “The International Space Station and NASA’s more than two dozen satellites and instruments in space have long been invaluable in determining changes to the Earth’s climate. EMIT is proving to be a critical tool in our toolbox to measure this potent greenhouse gas – and stop it at the source.”

Methane absorbs infrared light in a unique pattern – called a spectral fingerprint – that EMIT’s imaging spectrometer can discern with high accuracy and precision. The instrument can also measure carbon dioxide.

The cube (left) shows methane plumes (purple, orange, yellow) over Turkmenistan. The rainbow colors are the spectral fingerprints from corresponding spots in the front image. The blue line in the graph (right) shows the methane fingerprint EMIT detected; the red line is the expected fingerprint based on an atmospheric simulation.

Credit: NASA/JPL-Caltech

The new observations stem from the broad coverage of the planet afforded by the space station’s orbit, as well as from EMIT’s ability to scan swaths of Earth’s surface dozens of miles wide while resolving areas as small as a soccer field.

“These results are exceptional, and they demonstrate the value of pairing global-scale perspective with the resolution required to identify methane point sources, down to the facility scale,” said David Thompson, EMIT’s instrument scientist and a senior research scientist at NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission. “It’s a unique capability that will raise the bar on efforts to attribute methane sources and mitigate emissions from human activities.”

Relative to carbon dioxide, methane makes up a fraction of human-caused greenhouse-gas emissions, but it’s estimated to be 80 times more effective, ton for ton, at trapping heat in the atmosphere in the 20 years after release. Moreover, where carbon dioxide lingers for centuries, methane persists for about a decade, meaning that if emissions are reduced, the atmosphere will respond in a similar timeframe, leading to slower near-term warming.

Identifying methane point sources can be a key step in the process. With knowledge of the locations of big emitters, operators of facilities, equipment, and infrastructure giving off the gas can quickly act to limit emissions.

Watch video of EMIT’s launch and “first light”

EMIT’s methane observations came as scientists verified the accuracy of the imaging spectrometer’s mineral data. Over its mission, EMIT will collect measurements of surface minerals in arid regions of Africa, Asia, North and South America, and Australia. The data will help researchers better understand airborne dust particles’ role in heating and cooling Earth’s atmosphere and surface.

“We have been eager to see how EMIT’s mineral data will improve climate modeling,” said Kate Calvin, NASA’s chief scientist and senior climate advisor. “This additional methane-detecting capability offers a remarkable opportunity to measure and monitor greenhouse gases that contribute to climate change.”

Detecting Methane Plumes

The mission’s study area coincides with known methane hotspots around the world, enabling researchers to look for the gas in those regions to test the capability of the imaging spectrometer.

“Some of the plumes EMIT detected are among the largest ever seen – unlike anything that has ever been observed from space,” said Andrew Thorpe, a research technologist at JPL leading the EMIT methane effort. “What we’ve found in a just a short time already exceeds our expectations.”

Get the Latest JPL News

SUBSCRIBE TO THE NEWSLETTER

For example, the instrument detected a plume about 2 miles (3.3 kilometers) long southeast of Carlsbad, New Mexico, in the Permian Basin. One of the largest oilfields in the world, the Permian spans parts of southeastern New Mexico and western Texas.

In Turkmenistan, EMIT identified 12 plumes from oil and gas infrastructure east of the Caspian Sea port city of Hazar. Blowing to the west, some plumes stretch more than 20 miles (32 kilometers).

The team also identified a methane plume south of Tehran, Iran, at least 3 miles (4.8 kilometers) long, from a major waste-processing complex. Methane is a byproduct of decomposition, and landfills can be a major source.

Scientists estimate flow rates of about 40,300 pounds (18,300 kilograms) per hour at the Permian site, 111,000 pounds (50,400 kilograms) per hour in total for the Turkmenistan sources, and 18,700 pounds (8,500 kilograms) per hour at the Iran site.

The Turkmenistan sources together have a similar flow rate to the 2015 Aliso Canyon gas leak, which exceeded 110,000 pounds (50,000 kilograms) per hour at times. The Los Angeles-area disaster was among the largest methane releases in U.S. history.

With wide, repeated coverage from its vantage point on the space station, EMIT will potentially find hundreds of super-emitters – some of them previously spotted through air-, space-, or ground-based measurement, and others that were unknown.

“As it continues to survey the planet, EMIT will observe places in which no one thought to look for greenhouse-gas emitters before, and it will find plumes that no one expects,” said Robert Green, EMIT’s principal investigator at JPL.

EMIT is the first of a new class of spaceborne imaging spectrometers to study Earth. One example is Carbon Plume Mapper (CPM), an instrument in development at JPL that’s designed to detect methane and carbon dioxide. JPL is working with a nonprofit, Carbon Mapper, along with other partners, to launch two satellites equipped with CPM in late 2023.

More About the Mission

EMIT was selected from the Earth Venture Instrument-4 solicitation under the Earth Science Division of NASA Science Mission Directorate and was developed at NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech in Pasadena, California. It launched aboard a SpaceX Dragon resupply spacecraft from NASA’s Kennedy Space Center in Florida on July 14, 2022. The instrument’s data will be delivered to the NASA Land Processes Distributed Active Archive Center (DAAC) for use by other researchers and the public.

The International Space Station hosts seven instruments for NASA Earth Science that are providing novel information for understanding our changing planet.

To learn more about the mission, visit:

https://earth.jpl.nasa.gov/emit/

EMIT media reel
EMIT fact sheet

News Media Contact

Andrew Wang / Jane J. Lee

Jet Propulsion Laboratory, Pasadena, Calif.

626-379-6874 / 818-354-0307

andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov

2022-162

Related News

Earth .

Joint NASA, CNES Water-Tracking Satellite Reveals First Stunning Views

Climate Change .

NASA Uses 30-Year Satellite Record to Track and Project Rising Seas

Weather .

Ranking Atmospheric Rivers: New Study Finds World of Potential

Earth .

NASA and Italian Space Agency Join Forces on Air Pollution Mission

Earth .

NASA-ISRO Science Instruments Arrive in India Ahead of 2024 Launch

Climate Change .

NASA Space Mission Takes Stock of Carbon Dioxide Emissions by Countries

Earth .

Removing Traces of Life in Lab Helps NASA Scientists Study Its Origins

Earth .

Dynamic NASA-Built Weather Sensors Enlisted to Track Tropical Cyclones

Earth .

Scientists Track Tropical Landslide Creeping Below an African City

Climate Change .

NASA-ISRO Earth Science Instruments Get Send-Off Before Moving to India

Explore More

Image .

Mir Diamond Mine, Siberia

Image .

30 Years of Sea Level Rise

Image .

Chausey, French Channel Islands

Event April 20, 2023 .

Earth Surface Mineral Dust Source Investigation (EMIT) Mission

Image .

Poniente Almeriense, Spain

Image .

COWVR, TEMPEST Track Tropical Cyclone Mandous

Image .

Chaine des Puys, France

Image .

Satellites Assess Earthquake Damage in Turkey

Image .

London, England Parks

Mission .

Surface Water and Ocean Topography

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018