JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

How NASA’s Curiosity Rover Is Making Mars Safer for Astronauts

Nov. 15, 2021
Farewell to Murray Buttes Hero images

NASA’s Curiosity Mars rover used its Mast Camera, or Mastcam, to capture this image of an outcrop with finely layered rocks within the “Murray Buttes” region on lower Mount Sharp on Sept. 8, 2016. Credit: NASA/JPL-Caltech/MSSS Full Image Details

Curosity's selfie at Murray Buttes

NASA’s Curiosity Mars rover used its Mars Hand Lens Imager, or MAHLI, to take this selfie at the “Quela” drilling location in the “Murray Buttes” area on lower Mount Sharp between Sept. 17 and 18, 2016. Credit: NASA/JPL-Caltech/MSSS Full Image Details

Mars Lava Tube Mouth

This pit crater was created by an empty lava tube in Mars’ Arsia Mons region. The image was captured by NASA’s Mars Reconnaissance Orbiter on Aug. 16, 2020.

Credit: NASA/JPL-Caltech/University of Arizona

A radiation sensor aboard the spacecraft is providing new data on the health risks humans would face on the surface.

Could lava tubes, caves, or subsurface habitats offer safe refuge for future astronauts on Mars? Scientists with NASA’s Curiosity Mars rover team are helping explore questions like that with the Radiation Assessment Detector, or RAD.

Unlike Earth, Mars doesn’t have a magnetic field to shield it from the high-energy particles whizzing around in space. That radiation can wreak havoc on human health, and it can seriously compromise the life support systems that Mars astronauts will depend on, as well.

Based on data from Curiosity’s RAD, researchers are finding that using natural materials such as the rock and sediment on Mars could offer some protection from this ever-present space radiation. In a paper published this summer in JGR Planets, they detailed how Curiosity remained parked against a cliff at a location called “Murray Buttes” from Sept. 9 to 21, 2016.

Get the Latest JPL News

SUBSCRIBE TO THE NEWSLETTER

While there, RAD measured a 4% decrease in overall radiation. More significantly, the instrument detected a 7.5% decrease in neutral particle radiation, including neutrons that can penetrate rock and are especially harmful to human health. These numbers are statistically high enough to show it was due to Curiosity’s location at the foot of the cliff rather than normal changes in the background radiation.

“We’ve been waiting a long time for the right conditions to get these results, which are critical to ensure the accuracy of our computer models,” said Bent Ehresmann of the Southwest Research Institute, lead author of the recent paper. “At Murray Buttes, we finally had these conditions and the data to analyze this effect. We’re now looking for other locations where RAD can repeat these kinds of measurements.”

Seasons change even on Mars and NASA's fleet of explorers are helping scientists learn more about the effects on the Red Planet.

Credit: NASA/JPL-Caltech/University of Arizona/ASU/MSSS

A Space Weather Outpost on Mars

Most of the radiation measured by RAD comes from galactic cosmic rays – particles cast out by exploding stars and sent pinballing throughout the universe. This forms a carpet of “background radiation” that can pose health risks for humans.

Far more intense radiation sporadically comes from the Sun in the form of solar storms that throw massive arcs of ionized gas into interplanetary space.

“These structures twist in space, sometimes forming complex croissant-shaped flux tubes larger than Earth, driving shock waves that can efficiently energize particles,” said Jingnan Guo, who led a study, published in September in The Astronomy and Astrophysics Review, analyzing nine years of RAD data while she was at Germany’s Christian Albrecht University.

“Cosmic rays, solar radiation, solar storms – they are all components of space weather, and RAD is effectively a space weather outpost on the surface of Mars,” says Don Hassler of the Southwest Research Institute, principal investigator of the RAD instrument.

Solar storms occur with varying frequency based on 11-year cycles, with certain cycles bearing more frequent and energetic storms than others. Counterintuitively, the periods when solar activity is at its highest may be the safest time for future astronauts on Mars: The increased solar activity shields the Red Planet from cosmic rays by as much as 30 to 50%, compared to periods when solar activity is lower.

“It’s a trade-off,” Guo said. “These high-intensity periods reduce one source of radiation: the omnipresent, high-energy cosmic ray background radiation around Mars. But at the same time, astronauts will have to contend with intermittent, more intense radiation from solar storms.”

“The observations from RAD are key to developing the ability to predict and measure space weather, the Sun’s influence on Earth and other solar system bodies,” said Jim Spann, space weather lead for NASA’s Heliophysics Division. “As NASA plans for eventual human journeys to Mars, RAD serves as an outpost and part of the Heliophysics System Observatory – a fleet of 27 missions that investigates the Sun and its influence on space – whose research supports our understanding of and exploration of space.”

RADs Location Aboard Curiosity

The top of the Radiation Assessment Detector can be seen on the deck of NASA’s Curiosity Mars rover.

Credit: NASA/JPL-Caltech/MSSS

RAD has measured the impact of more than a dozen solar storms to date (five while traveling to Mars in 2012), although these past nine years have marked an especially weak period of solar activity.

Scientists are just now starting to see activity pick up as the Sun comes out of its slumber and becomes more active. In fact, RAD observed evidence of the first X-class flare of the new solar cycle on Oct. 28, 2021. X-class flares are the most intense category of solar flares, the largest of which can lead to power outages and communications blackouts on Earth.

“This is an exciting time for us, because one of the important objectives of RAD is to characterize the extremes of space weather. Events such as solar flares and storms are one type of space weather that happens most frequently during increased solar activity – the time we are approaching now,” Ehresmann said. More observations are needed to assess just how dangerous a really powerful solar storm would be to humans on the Martian surface.

RAD’s findings will feed into a much larger body of data being compiled for future crewed missions. In fact, NASA even equipped Curiosity’s counterpart, the Perseverance rover, with samples of spacesuit materials to assess how they hold up to radiation over time.

For more information:

https://mars.nasa.gov/msl/home/

and

https://www.nasa.gov/mission_pages/msl/index.html

News Media Contact

Andrew Good

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-2433

andrew.c.good@jpl.nasa.gov

Karen Fox / Alana Johnson

NASA Headquarters, Washington

301-286-6284 / 202-358-1501

karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

2021-226

Related News

Mars .

NASA’s Perseverance Rover Completes Mars Sample Depot

Solar System .

NASA’s Juno Team Assessing Camera After 48th Flyby of Jupiter

Solar System .

NASA’s Psyche Mission Continues Preparation for Launch in 2023

Solar System .

NASA’s Lunar Flashlight Team Assessing Spacecraft’s Propulsion System

Mars .

NASA Explores a Winter Wonderland on Mars

Solar System .

Juno Spacecraft Recovering Memory After 47th Flyby of Jupiter

Mars .

NASA Retires InSight Mars Lander Mission After Years of Science

Mars .

NASA’s Perseverance Rover Deposits First Sample on Mars Surface

Solar System .

40-Year Study Finds Mysterious Patterns in Temperatures at Jupiter

Mars .

NASA’s Perseverance Rover to Begin Building Martian Sample Depot

Explore More

Image .

Ariadnes Colles

Image .

Curiosity Finds a Meteorite, Cacao

Image .

Daedalia Planum

Image .

Daedalia Planum

Image .

A New Impact Event

Image .

Going with the Flow

Image .

A Bear on Mars?

Image .

Gully Activity in Triolet Crater

Image .

Perseverance's Three Forks Sample Depot Map

Image .

WATSON Documents Final Tube Dropped at Three Forks Sample Depot

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018