JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

How NASA Is Protecting Europa Clipper From Space Radiation

Oct. 24, 2023

Engineers and technicians are seen closing the vault of NASA’s Europa Clipper in the main clean room of the Spacecraft Assembly Facility at JPL on Oct. 7. The vault will protect the electronics of the spacecraft as it orbits Jupiter.

Credit: NASA/JPL-Caltech
Full Image Details

To explore the mysterious ice-encrusted moon Europa, the mission will need to endure bombardment by radiation and high-energy particles surrounding Jupiter.

When NASA’s Europa Clipper begins orbiting Jupiter to investigate whether its ice-encased moon, Europa, has conditions suitable for life, the spacecraft will pass repeatedly through one of the most punishing radiation environments in our solar system.

Hardening the spacecraft against potential damage from that radiation is no easy task. But on Oct. 7, the mission put the final piece of the spacecraft’s “armor” in place when it sealed the vault, a container specially designed to shield Europa Clipper’s sophisticated electronics. The probe is being put together, piece by piece, in the Spacecraft Assembly Facility at NASA’s Jet Propulsion Laboratory in Southern California ahead of its launch in October 2024.

“Closing the vault is a major milestone,” said Kendra Short, Europa Clipper’s deputy flight system manager at JPL. “It means we’ve got everything in there that we have to have in there. We’re ready to button it up.”

Join team members from NASA’s Europa Clipper mission behind the scenes in a clean room at JPL to learn about the design of the spacecraft.

Credit: NASA/JPL-Caltech

Just under a half-inch (1 centimeter) thick, the aluminum vault houses the electronics for the spacecraft’s suite of science instruments. The alternative of shielding each set of electronic parts individually would add cost and weight to the spacecraft.

“The vault is designed to reduce the radiation environment to acceptable levels for most of the electronics,” said JPL’s Insoo Jun, the co-chair of the Europa Clipper Radiation Focus Group and an expert on space radiation.

Punishing Radiation

Jupiter’s gigantic magnetic field is 20,000 times as strong as Earth’s and spins rapidly in time with the planet’s 10-hour rotation period. This field captures and accelerates charged particles from Jupiter’s space environment to create powerful radiation belts. The radiation is a constant, physical presence – a kind of space weather – bombarding everything in its sphere of influence with damaging particles.

“Jupiter has the most intense radiation environment other than the Sun in the solar system,” Jun said. “The radiation environment is affecting every aspect of the mission.”

NASA’s Europa Clipper, depicted in this illustration, will carry a broad suite of instruments into orbit around Jupiter and conduct multiple close flybys of Europa to gather information on its atmosphere, surface, and interior.

NASA’s Europa Clipper, depicted in this illustration, will carry a broad suite of instruments into orbit around Jupiter and conduct multiple close flybys of Europa to gather information on its atmosphere, surface, and interior.

Credit: NASA/JPL-Caltech
Full Image Details

That’s why when the spacecraft arrives at Jupiter in 2030, Europa Clipper won’t simply park in orbit around Europa. Instead, like some previous spacecraft that studied the Jovian system, it will make a wide-ranging orbit of Jupiter itself to move away from the planet and its harsh radiation as much as possible. During those looping orbits of the planet, the spacecraft will fly past Europa nearly 50 times to gather scientific data.

The radiation is so intense that scientists believe it modifies the surface of Europa, causing visible color changes, said Tom Nordheim, a planetary scientist at JPL who specializes in icy outer moons – Europa as well as Saturn’s Enceladus.

“Radiation on the surface of Europa is a major geologic modification process,” Nordheim said. “When you look at Europa – you know, the reddish-brown color – scientists have shown that this is consistent with radiation processing.”

Chaotic Icescape

So even as engineers work to keep radiation out of Europa Clipper, scientists like Nordheim and Jun hope to use the space probe to study it.

Get the Latest JPL News

SUBSCRIBE TO THE NEWSLETTER

“With a dedicated radiation monitoring unit, and using opportunistic radiation data from its instruments, Europa Clipper will help reveal the unique and challenging radiation environment at Jupiter,” Jun said.

Nordheim zeroes in on Europa’s “chaos terrain,” areas where blocks of surface material appear to have broken apart, rotated, and moved into new positions, in many cases preserving preexisting linear fracture patterns.

Deep beneath the moon’s icy surface is a vast liquid-water ocean, scientists believe, that could offer a habitable environment for life. Some areas of Europa’s surface show evidence of material transport from the subsurface to the surface. “We need to understand the context of how radiation modified that material,” Nordheim said. “It can alter the chemical makeup of the material.”

The Power of Heat

Because Europa’s ocean is locked inside an envelope of ice, any possible life forms would not be able to rely directly on the Sun for energy, as plants do on Earth. Instead, they’d need an alternative energy source, such as heat or chemical energy. Radiation raining down on Europa’s surface could help provide such a source by creating oxidants, such as oxygen or hydrogen peroxide, as the radiation interacts with the surface ice layer.

Over time, these oxidants could be transported from the surface to the interior ocean. “The surface could be a window into the subsurface,” Nordheim said. A better understanding of such processes could provide a key to unlock more of the Jupiter system’s secrets, he added: “Radiation is one of the things that makes Europa so interesting. It’s part of the story.”

More About the Mission

Europa Clipper’s main science goal is to determine whether there are places below Jupiter’s icy moon, Europa, that could support life. The mission’s three main science objectives are to determine the thickness of the moon’s icy shell and its surface interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.

More information about Europa can be found here:

europa.nasa.gov

News Media Contact

Gretchen McCartney

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-6215

gretchen.p.mccartney@jpl.nasa.gov

Karen Fox / Alana Johnson

NASA Headquarters, Washington

301-286-6284 / 202-358-1501

karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

Written by Pat Brennan

2023-149

Related News

Solar System .

NASA’s 6-Pack of Mini-Satellites Ready for Their Moment in the Sun

Solar System .

Time Is Running Out to Add Your Name to NASA’s Europa Clipper

Solar System .

NASA’s Juno Finds Jupiter’s Winds Penetrate in Cylindrical Layers

Mars .

NASA’s Curiosity Rover Clocks 4,000 Days on Mars

Solar System .

Salts and Organics Observed on Ganymede’s Surface by NASA’s Juno

Solar System .

NASA’s Voyager Team Focuses on Software Patch, Thrusters

Solar System .

NASA’s Psyche Spacecraft, Optical Comms Demo En Route to Asteroid

Solar System .

Journey to a Metal-Rich World: NASA’s Psyche Is Ready to Launch

Technology .

5 Things to Know About NASA’s Deep Space Optical Communications

Solar System .

6 Things to Know About NASA’s Asteroid-Exploring Psyche Mission

Explore More

QUIZZES .

Space Trivia

Robot .

EELS (Exobiology Extant Life Surveyor)

Image .

NASA's Juno Mission Images Jupiter's Belts and Zones

Image .

Cylindrical Orientation of Jupiter's East-West Jet-Streams

Image .

Curiosity Views 'Sequoia' Using Its Mastcam

Image .

Curiosity's Navcams View the Area Around 'Sequoia'

Image .

Curiosity Mastcam Filter Wheel

Image .

Ganymede Grooved Terrain as Seen by Juno's JIRAM

Image .

Distribution of Buried Ice on Mars

Image .

Ice-Exposing Impact Crater Surrounded by Polygon Terrain

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
JPL Plan: 2023-2026
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018