Red Marks the Spot
Why Hematite
Geologists are eager to reach the hematite-rich area in the upper left to closely examine the soil, which may reveal secrets about how the hematite got to this location. Knowing how the hematite on Mars was formed may help scientists characterize the past environment and determine whether that environment provided favorable conditions for life.
The Plan
Over the next few sols, engineers and scientists plan to drive Opportunity to the hematite-rich area then attempt a "pre-trench" sequence, taking measurements with the Moessbauer spectrometer, alpha particle X-ray spectrometer and microscopic imager. Next, the plan is to trench the hematite rich area by spinning one wheel in place to "dig" a shallow hole. Finally, scientists will aim the instrument arm back at the same area where it pre-trenched to get post-trench data with the same instruments to compare and contrast the levels of hematite and revel how deep the hematite lays in the dirt.
Index Map Details
The hematite abundance index map was created using data from the miniature thermal emission instrument. The first layer is a mosaic of panoramic camera images taken prior to egress, when Opportunity was still on the lander. The colored dots represent data collected by the miniature thermal emission spectrometer on sol 11, after Opportunity had rolled off of the lander and the rover was located at the center of the blue semi-circle.
The spectrometer is located on the panoramic camera mast. On sol 11, it took a low-angle 180-degree panorama of the area in front of the rover, indicated by the blue shaded dots. The instrument then raised the angle of its field of view a few degrees higher to sweep around behind the rover, indicated by the red and yellow dots offset at the far sides of the image.
JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover project for NASA's Office of Space Science, Washington, D.C.