JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Asteroids and Comets
.

Webb Looks for Fomalhaut’s Asteroid Belt and Finds Much More

May 8, 2023

This image of the dusty debris disk surrounding the young star Fomalhaut is from Webb’s Mid-Infrared Instrument (MIRI). It reveals three nested belts extending out to 14 billion miles (23 billion kilometers) from the star. The inner belts were revealed by Webb for the first time. Credit: NASA, ESA, CSA, A. Gáspár (University of Arizona). Image processing: A. Pagan (STScI) Full Image Details

Three glowing disks of dusty debris encircling a young star are reminiscent of our solar system’s asteroid belt.

Astronomers used NASA’s James Webb Space Telescope to image the warm dust around a nearby young star, Fomalhaut, in order to study the first asteroid belt ever seen outside of our solar system in infrared light. But to their surprise, the dusty structures are much more complex than the asteroid and Kuiper dust belts of our solar system. Overall, there are three nested belts extending out to 14 billion miles (23 billion kilometers) from the star; that’s 150 times the distance of Earth from the Sun. The scale of the outermost belt is roughly twice the scale of our solar system’s Kuiper Belt of small bodies and cold dust beyond Neptune. The inner belts – which had never been seen before – were revealed by Webb for the first time.

The belts encircle the young hot star, which can be seen with the naked eye as the brightest star in the southern constellation Piscis Austrinus. The dusty belts are the debris from collisions of larger bodies, analogous to asteroids and comets, and are frequently described as “debris disks.” “I would describe Fomalhaut as the archetype of debris disks found elsewhere in our galaxy, because it has components similar to those we have in our own planetary system,” said András Gáspár of the University of Arizona in Tucson and lead author of a new paper describing these results. “By looking at the patterns in these rings, we can actually start to make a little sketch of what a planetary system ought to look like – if we could actually take a deep enough picture to see the suspected planets.”

This labeled image of the debris disk surrounding the young star Fomalhaut shows the location of the three rings and other features. At right, a great dust cloud is highlighted and pullouts show it in two wavelengths of infrared light: 23 and 25.5 microns. Credit: NASA, ESA, CSA, A. Gáspár (University of Arizona). Image processing: A. Pagan (STScI) Full Image Details

The Hubble Space Telescope and Herschel Space Observatory, as well as the Atacama Large Millimeter/submillimeter Array (ALMA), have previously taken sharp images of the outermost belt. However, none of them found any structure interior to it. The inner belts have been resolved for the first time by Webb in infrared light. “Where Webb really excels is that we’re able to physically resolve the thermal glow from dust in those inner regions. So you can see inner belts that we could never see before,” said Schuyler Wolff, another member of the team at the University of Arizona.

Hubble, ALMA, and Webb are tag-teaming to assemble a holistic view of the debris disks around a number of stars. “With Hubble and ALMA, we were able to image a bunch of Kuiper Belt analogs, and we’ve learned loads about how outer disks form and evolve,” said Wolff. “But we need Webb to allow us to image a dozen or so asteroid belts elsewhere. We can learn just as much about the inner warm regions of these disks as Hubble and ALMA taught us about the colder outer regions.”

Get the Latest JPL News

SUBSCRIBE TO THE NEWSLETTER

These belts most likely are carved by the gravitational forces produced by unseen planets. Similarly, inside our solar system Jupiter corrals the asteroid belt, the inner edge of the Kuiper Belt is sculpted by Neptune, and the outer edge could be shepherded by as-yet-unseen bodies beyond it. As Webb images more systems, we will learn about the configurations of their planets.

Fomalhaut’s dust ring was discovered in 1983 in observations made by NASA’s Infrared Astronomical Satellite (IRAS). The existence of the ring has also been inferred from previous and longer-wavelength observations using submillimeter telescopes on Mauna Kea, Hawaii, NASA’s Spitzer Space Telescope, and Caltech’s Submillimeter Observatory.

“The belts around Fomalhaut are kind of a mystery novel: Where are the planets?” said George Rieke, another team member and U.S. science lead for Webb’s Mid-Infrared Instrument (MIRI), which made these observations. “I think it’s not a very big leap to say there’s probably a really interesting planetary system around the star.”

“We definitely didn’t expect the more complex structure with the second intermediate belt and then the broader asteroid belt,” added Wolff. “That structure is very exciting because any time an astronomer sees a gap and rings in a disk, they say, ‘There could be an embedded planet shaping the rings!’”

Webb also imaged what Gáspár dubs “the great dust cloud,” which may be evidence for a collision occurring in the outer ring between two protoplanetary bodies. This is a different feature from a suspected planet first seen inside the outer ring by Hubble in 2008. Subsequent Hubble observations showed that by 2014 the object had vanished. A plausible interpretation is that this newly discovered feature, like the earlier one, is an expanding cloud of very fine dust particles from two icy bodies that smashed into each other.

The idea of a protoplanetary disk around a star goes back to the late 1700s, when astronomers Immanuel Kant and Pierre-Simon Laplace independently developed the theory that the Sun and planets formed from a rotating gas cloud that collapsed and flattened due to gravity. Debris disks develop later, following the formation of planets and dispersal of the primordial gas in the systems. They show that small bodies like asteroids are colliding catastrophically and pulverizing their surfaces into huge clouds of dust and other debris. Observations of their dust provide unique clues to the structure of an exoplanetary system, reaching down to Earth-sized planets and even asteroids, which are much too small to see individually.

The team’s results are being published in the journal Nature Astronomy.

More About the Mission

The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency), and CSA (Canadian Space Agency).

MIRI was developed through a 50-50 partnership between NASA and ESA. NASA’s Jet Propulsion Laboratory led the U.S. efforts for MIRI, and a multinational consortium of European astronomical institutes contributes for ESA. George Rieke with the University of Arizona is the MIRI science team lead. Gillian Wright is the MIRI European principal investigator. Alistair Glasse with UK ATC is the MIRI instrument scientist, and Michael Ressler is the U.S. project scientist at JPL. Laszlo Tamas with UK ATC manages the European Consortium. The MIRI cryocooler development was led and managed by JPL, in collaboration with Northrop Grumman in Redondo Beach, California, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Caltech manages JPL for NASA.

For more information about Webb, visit:

https://www.nasa.gov/webb

News Media Contact

Ray Villard / Christine Pulliam

Space Telescope Science Institute, Baltimore, Md.

villard@stsci.edu / cpulliam@stsci.edu

Calla Cofield

Jet Propulsion Laboratory, Pasadena, Calif.

626-808-2469

calla.e.cofield@jpl.nasa.gov

2023-064

Related News

Asteroids and Comets .

NASA’s Planetary Radar Captures Detailed View of Oblong Asteroid

Asteroids and Comets .

Webb Detects Extremely Small Main Belt Asteroid

Asteroids and Comets .

NASA System Predicts Small Asteroid to Pass Close by Earth This Week

Asteroids and Comets .

Construction Begins on NASA’s Next-Generation Asteroid Hunter

Asteroids and Comets .

NASA Program Predicted Impact of Small Asteroid Over Ontario, Canada

Asteroids and Comets .

As Psyche Mission Moves Forward, NASA Responds to Independent Review

Asteroids and Comets .

NASA to Discuss Psyche Independent Review Board Results

Asteroids and Comets .

NASA Continues Psyche Asteroid Mission

Asteroids and Comets .

NASA’s Asteroid-Striking DART Mission Team Has JPL Members

Asteroids and Comets .

NASA to Discuss Psyche Asteroid Mission

Explore More

Image .

NASA's Planetary Radar Images Asteroid 2006 HV5

Mission .

Psyche

Mission .

Near-Earth Object Surveyor

Mission .

Near Earth Asteroid Scout

Image .

Radar Observations of Elongated Near-Earth Asteroid 2011 AG5

Image .

Curiosity Finds a Meteorite, Cacao

Image .

NASA's Psyche: Picking up Launch Prep for 2023

Image .

NEO Surveyor in an Infrared Starfield Filled With Asteroids (Illustration)

Image .

Flyover of Mars Impact Using HiRISE Data (Animation)

Image .

NASA's InSight Records the Sound of a Martian Impact

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018