JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Asteroids and Comets
.

US Space Force Releases Decades of Bolide Data to NASA for Planetary Defense Studies

April 7, 2022

This photograph taken by an International Space Station astronaut shows a bright meteor from the Perseid meteor shower in Earth’s atmosphere. The brightest meteors are known as fireballs, or bolides.

Credit: NASA

Hosted by JPL’s Center for Near Earth Object Studies, the data can be used by the science community to better understand how asteroids break up when entering the atmosphere.

An agreement between NASA and the U.S. Space Force recently authorized the public release of decades of data collected by U.S. government sensors on fireball events (large bright meteors also known as bolides) for the benefit of the scientific and planetary defense communities. This action results from collaboration between NASA’s Planetary Defense Coordination Office (PDCO) and the U.S. Space Force to continue furthering our nation’s efforts in planetary defense, which include finding, tracking, characterizing, and cataloguing near-Earth objects (NEOs). The newly released data is composed of information on the changing brightness of bolides as they pass through Earth’s atmosphere, called light curves, that could enhance the planetary defense community’s current ability to model the effects of impacts by larger asteroids that could one day pose a threat to Earth.

Bolides, very bright meteors that can even be seen in daylight, are a regular occurrence – on the order of several dozen times per year – that result when our planet is impacted by asteroids too small to reach the ground but large enough to explode upon impact with Earth’s atmosphere. U.S. government sensors detect these atmospheric impact events, and the bolide data is reported to the NASA Jet Propulsion Laboratory’s Center for Near Earth Object Studies (CNEOS) fireballs database, which contains data going back to 1988 for nearly one thousand bolide events. Now, planetary defense experts will have access to even more detailed data – specifically, light curve information that captures the optical intensity variation during the several seconds of an object’s breakup in the atmosphere. This uniquely rich data set has been greatly sought after by the scientific community, as an object’s breakup in Earth’s atmosphere provides scientific insight into the object’s strength and composition based on what altitudes at which it breaks up and disintegrates. The approximate total radiated energy and pre-entry velocity vector (i.e., direction) can also be better derived from bolide light curve data.

“The growing archive of bolide reports, as posted on the NASA CNEOS Fireballs website, has significantly increased scientific knowledge and contributes to the White House approved National Near-Earth Object Preparedness Strategy and Action Plan” said Lindley Johnson, planetary defense officer at NASA Headquarters. “The release of these new bolide data demonstrates another key area of collaboration between NASA and the U.S. Space Force and helps further the pursuit of improved capabilities for understanding these objects and our preparedness to respond to the impact hazard NEOs pose to Earth.”

Recently a small asteroid approximately 2 meters in size, so small it posed no hazard to Earth, was detected in space as it approached Earth and impacted the atmosphere southwest of Jan Mayen, a Norwegian island nearly 300 miles (470 kilometers) off the east coast of Greenland and northeast of Iceland. While this asteroid, designated 2022 EB5, was much smaller than objects NASA is tasked to detect and warn about, CNEOS continued to update NASA’s PDCO with impact location predictions as observations were collected leading up to 2022 EB5’s impact, offering the planetary defense community a real-word scenario to test NEO tracking capabilities and give confidence that the impact prediction process and models are adequate for timely and accurate notification of the potential impact of a larger object, should one be discovered on a trajectory toward Earth. Like other bolide events, 2022 EB5’s impact was detected by U.S. government sensors and reported by the U.S. Space Force units, confirming the time and location predicted by CNEOS, and added to NASA’s archive of these events at JPL CNEOS.

This screen capture from NASA JPL CNEOS’s fireball webpage depicts data collected by U.S. government sensors of a small 2-meter asteroid named 2022 EB5 impacting Earth’s atmosphere on March 11, 2022.

Credit: NASA/JPL-Caltech and U.S. Space Force

Another notable bolide event in this released data set is of a meteor that was detected on Jan. 8, 2014. This object gained the interest of the scientific community, as it has been posited it could have interstellar origin due to the detected event’s high velocity within the atmosphere. Further analysis carried out under U.S. Space Command’s purview confirmed the object’s high velocity impact, but the short duration of collected data, less than five seconds, makes it difficult to definitively determine if the object’s origin was indeed interstellar.

NASA established the PDCO in 2016 to manage the agency’s ongoing efforts in planetary defense. NASA has been directed to discover 90% of NEOs larger than 140 meters (459 feet) in size. The agency is diligently working to achieve this directive and has currently found approximately 40% of near-Earth asteroids larger than that size.

For more information about PDCO, visit:

https://www.nasa.gov/planetarydefense

Follow NASA Asteroid Watch on Twitter at @AsteroidWatch.

News Media Contact

Josh Handal / Karen Fox

NASA Headquarters, Washington

202-358-1600 / 301-286-6284

joshua.a.handal@nasa.gov / karen.c.fox@nasa.gov

2022-049

Related News

Asteroids and Comets .

NASA’s Planetary Radar Captures Detailed View of Oblong Asteroid

Asteroids and Comets .

Webb Detects Extremely Small Main Belt Asteroid

Asteroids and Comets .

NASA System Predicts Small Asteroid to Pass Close by Earth This Week

Asteroids and Comets .

Construction Begins on NASA’s Next-Generation Asteroid Hunter

Asteroids and Comets .

NASA Program Predicted Impact of Small Asteroid Over Ontario, Canada

Asteroids and Comets .

As Psyche Mission Moves Forward, NASA Responds to Independent Review

Asteroids and Comets .

NASA to Discuss Psyche Independent Review Board Results

Asteroids and Comets .

NASA Continues Psyche Asteroid Mission

Asteroids and Comets .

NASA’s Asteroid-Striking DART Mission Team Has JPL Members

Asteroids and Comets .

NASA to Discuss Psyche Asteroid Mission

Explore More

Mission .

Psyche

Event Oct. 13, 2022 .

Near Earth Objects – Opportunities for Discoveries

Mission .

Near Earth Asteroid Scout

Asteroid Watch Overview .

Asteroid Watch

Asteroid Watch Fast Facts .

Fast Facts

Mission .

Stardust

Mission .

NEOWISE

Mission .

Microwave Instrument for the Rosetta Orbiter

Mission .

Hayabusa

Mission .

Deep Space 1

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018