JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

Titan's Building Blocks Might Pre-date Saturn

Jun 23, 2014
New research on the nitrogen in Titan's atmosphere indicates that the moon's raw materials might have been locked up in ices that condensed before Saturn began its formation.› Full image and caption
Credit: NASA/JPL-Caltech/Space Science Institute
The building blocks of comets, and apparently Saturn's largest moon, Titan, formed under similar conditions in the disk of gas and dust that formed the sun.› Full image and caption
Credit: NASA/JPL-Caltech

A new study finds firm evidence that nitrogen in the atmosphere of Titan originated in conditions similar to the cold birthplace of comets from the Oort cloud.

A combined NASA and European Space Agency (ESA)-funded study has found firm evidence that nitrogen in the atmosphere of Saturn's moon Titan originated in conditions similar to the cold birthplace of the most ancient comets from the Oort cloud. The finding rules out the possibility that Titan's building blocks formed within the warm disk of material thought to have surrounded the infant planet Saturn during its formation.

The main implication of this new research is that Titan's building blocks formed early in the solar system's history, in the cold disk of gas and dust that formed the sun. This was also the birthplace of many comets, which retain a primitive, or largely unchanged, composition today.

The research, led by Kathleen Mandt of Southwest Research Institute in San Antonio, was published this week in the Astrophysical Journal Letters. Co-authors on the study include colleagues from France's National Center for Scientific Research (CNRS) and Observatoire de Paris.

Nitrogen is the main ingredient in the atmosphere of Earth, as well as on Titan. The planet-sized moon of Saturn is frequently compared to an early version of Earth, locked in a deep freeze.

The paper suggests that information about Titan's original building blocks is still present in the icy moon's atmosphere, allowing researchers to test different ideas about how the moon might have formed. Mandt and colleagues demonstrate that a particular chemical hint as to the origin of Titan's nitrogen should be essentially the same today as when this moon formed, up to 4.6 billion years ago. That hint is the ratio of one isotope, or form, of nitrogen, called nitrogen-14, to another isotope, called nitrogen-15.

The team finds that our solar system is not old enough for this nitrogen isotope ratio to have changed significantly. This is contrary to what scientists commonly have assumed.

"When we looked closely at how this ratio could evolve with time, we found that it was impossible for it to change significantly. Titan's atmosphere contains so much nitrogen that no process can significantly modify this tracer even given more than four billion years of solar system history," Mandt said.

The small amount of change in this isotope ratio over long time periods makes it possible for researchers to compare Titan's original building blocks to other solar system objects in search of connections between them.

As planetary scientists investigate the mystery of how the solar system formed, isotope ratios are one of the most valuable types of clues they are able to collect. In planetary atmospheres and surface materials, the specific amount of one form of an element, like nitrogen, relative to another form of that same element can be a powerful diagnostic tool because it is closely tied to the conditions under which materials form.

The study also has implications for Earth. It supports the emerging view that ammonia ice from comets is not likely to be the primary source of Earth's nitrogen. In the past, researchers assumed a connection between comets, Titan and Earth, and supposed the nitrogen isotope ratio in Titan's original atmosphere was the same as that ratio is on Earth today. Measurements of the nitrogen isotope ratio at Titan by several instruments of the NASA and ESA Cassini-Huygens mission showed that this is not the case -- meaning this ratio is different on Titan and Earth -- while measurements of the ratio in comets have borne out their connection to Titan. This means the sources of Earth's and Titan's nitrogen must have been different.

Other researchers previously had shown that Earth's nitrogen isotope ratio likely has not changed significantly since our planet formed.

"Some have suggested that meteorites brought nitrogen to Earth, or that nitrogen was captured directly from the disk of gas that formed the sun. This is an interesting puzzle for future investigations," Mandt said.

Mandt and colleagues are eager to see whether their findings are supported by data from ESA's Rosetta mission, when it studies comet 67P/ Churyumov-Gerasimenko beginning later this year. If their analysis is correct, the comet should have a lower ratio of two isotopes -- in this case of hydrogen in methane ice -- than the ratio on Titan. In essence, they believe this chemical ratio on Titan is more similar to Oort cloud comets than comets born in the Kuiper Belt, which begins near the orbit of Neptune (67P/ Churyumov-Gerasimenko is a Kuiper Belt comet).

"This exciting result is a key example of Cassini science informing our knowledge of the history of solar system and how the Earth formed," said Scott Edgington, Cassini deputy project scientist at NASA's Jet Propulsion Laboratory, Pasadena, California.

The Cassini-Huygens mission is a cooperative project of NASA, ESA and the Italian Space Agency. JPL, a division of the California Institute of Technology, Pasadena, manages the mission for NASA's Science Mission Directorate in Washington.

Rosetta is an ESA mission with contributions from its member states and NASA. JPL manages the U.S. contribution of the Rosetta mission for NASA's Science Mission Directorate in Washington.

More information about Cassini is available at the following sites:

http://www.nasa.gov/cassini

http://saturn.jpl.nasa.gov

News Media Contact

Preston Dyches/Whitney Clavin

818-354-7013 / 818-354-4673

preston.dyches@jpl.nasa.gov / whitney.clavin@jpl.nasa.gov

2014-200

Related News

Mars .

NASA’s Perseverance Rover 22 Days From Mars Landing

Solar System .

NASA’s Deep Space Network Welcomes a New Dish to the Family

Mars .

6 Things to Know About NASA’s Mars Helicopter on Its Way to Mars

Mars .

NASA to Host Virtual Briefing on February Perseverance Mars Rover Landing

Mars .

NASA InSight’s ‘Mole’ Ends Its Journey on Mars

Mars .

Mars 2020 Perseverance Rover to Capture Sounds From the Red Planet

Solar System .

NASA’s Juno Mission Expands Into the Future

Mars .

NASA’s Curiosity Rover Reaches Its 3,000th Day on Mars

Mars .

NASA Extends Exploration for Two Planetary Science Missions

Mars .

Celebrate the Perseverance Rover Landing With NASA's Student Challenge

Explore More

Image .

Juno's Mission Goes On

Topic .

Solar System

Image .

A Hot Spot on Jupiter

Image .

Jupiter's Storm Oval BA As Viewed By An Artist

Image .

Two Views of Jupiter Hot Spot

Image .

A Jupiter Circumpolar Cyclone

Image .

Jupiter North Pole Detail

Video .

What's Up - January 2021

Image .

All Eight Northern Circumpolar Cyclones in 2020

Image .

Tracking Clouds on Jupiter

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono