JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Earth
.

Study: Third of Big Groundwater Basins in Distress

Jun 16, 2015
Groundwater storage trends for Earth's 37 largest aquifers from UCI-led study using NASA GRACE data (2003 - 2013). Of these, 21 have exceeded sustainability tipping points and are being depleted, with 13 considered significantly distressed, threatening regional water security and resilience.
Credit: UC Irvine/NASA/JPL-Caltech

UC Irvine studies using NASA GRACE data find a third of Earth's largest groundwater basins are being rapidly depleted by human use, despite little data about how much water remains.

About one third of Earth's largest groundwater basins are being rapidly depleted by human consumption, despite having little accurate data about how much water remains in them, according to two new studies led by the University of California, Irvine (UCI), using data from NASA's Gravity Recovery and Climate Experiment (GRACE) satellites.

This means that significant segments of Earth's population are consuming groundwater quickly without knowing when it might run out, the researchers conclude. The findings are published today in Water Resources Research.

"Available physical and chemical measurements are simply insufficient," said UCI professor and principal investigator Jay Famiglietti, who is also the senior water scientist at NASA's Jet Propulsion Laboratory in Pasadena, California. "Given how quickly we are consuming the world's groundwater reserves, we need a coordinated global effort to determine how much is left."

The studies are the first to comprehensively characterize global groundwater losses with data from space, using readings generated by NASA's twin GRACE satellites. GRACE measures dips and bumps in Earth's gravity, which are affected by the mass of water. In the first paper, researchers found that 13 of the planet's 37 largest aquifers studied between 2003 and 2013 were being depleted while receiving little to no recharge.

Eight were classified as "overstressed," with nearly no natural replenishment to offset usage. Another five were found to be "extremely" or "highly" stressed, depending upon the level of replenishment in each. Those aquifers were still being depleted but had some water flowing back into them.

The most overburdened aquifers are in the world's driest areas, where populations draw heavily on underground water. Climate change and population growth are expected to intensify the problem.

"What happens when a highly stressed aquifer is located in a region with socioeconomic or political tensions that can't supplement declining water supplies fast enough?" asked Alexandra Richey, the lead author on both studies, who conducted the research as a UCI doctoral student. "We're trying to raise red flags now to pinpoint where active management today could protect future lives and livelihoods."

The research team -- which included co-authors from NASA, the National Center for Atmospheric Research, National Taiwan University and UC Santa Barbara -- found that the Arabian Aquifer System, an important water source for more than 60 million people, is the most overstressed in the world.

The Indus Basin aquifer of northwestern India and Pakistan is the second-most overstressed, and the Murzuk-Djado Basin in northern Africa is third. California's Central Valley, used heavily for agriculture and suffering rapid depletion, was slightly better off, but was still labeled highly stressed in the first study.

"As we're seeing in California right now, we rely much more heavily on groundwater during drought," said Famiglietti. "When examining the sustainability of a region's water resources, we absolutely must account for that dependence."

In a companion paper published today in the same journal, the scientists conclude that the total remaining volume of the world's usable groundwater is poorly known, with estimates that often vary widely. The total groundwater volume is likely far less than rudimentary estimates made decades ago. By comparing their satellite-derived groundwater loss rates to what little data exist on groundwater availability, the researchers found major discrepancies in projected "time to depletion." In the overstressed Northwest Sahara Aquifer System, for example, time to depletion estimates varied between 10 years and 21,000 years.

"We don't actually know how much is stored in each of these aquifers. Estimates of remaining storage might vary from decades to millennia," said Richey. "In a water-scarce society, we can no longer tolerate this level of uncertainty, especially since groundwater is disappearing so rapidly."

The study notes that the dearth of groundwater is already leading to significant ecological damage, including depleted rivers, declining water quality and subsiding land.

Groundwater aquifers are typically located in soils or deeper rock layers beneath Earth's surface. The depth and thickness of many large aquifers make it tough and costly to drill or otherwise reach bedrock and understand where the moisture bottoms out. But it has to be done, the authors say.

To read the technical papers, visit:

http://onlinelibrary.wiley.com/doi/10.1002/2015WR017349/abstract

and

http://onlinelibrary.wiley.com/doi/10.1002/2015WR017351/abstract

GRACE is a joint mission with the German Aerospace Center and the German Research Center for Geosciences, in partnership with the University of Texas at Austin. JPL developed the GRACE spacecraft and manages the mission for NASA's Science Mission Directorate, Washington.

For more information on GRACE, visit:

http://www.nasa.gov/grace

and

http://www.csr.utexas.edu/grace

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. NASA develops new ways to observe and study Earth's interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

For more information about NASA's Earth science activities, visit:

http://www.nasa.gov/earth

News Media Contact

Alan Buis

818-354-0474

alan.buis@jpl.nasa.gov

Janet Wilson

949-824-3969

janethw@uci.edu

2015-206

Related News

Earth .

NASA Satellites Detect Signs of Volcanic Unrest Years Before Eruptions

Technology .

POINTER: Seeing Through Walls to Help Locate Firefighters

Climate Change .

After COVID-19 Delay, Delta-X Field Campaign Begins in Louisiana

Asteroids and Comets .

NASA Analysis: Earth Is Safe From Asteroid Apophis for 100-Plus Years

Earth .

Major Earth Satellite to Track Disasters, Effects of Climate Change

Asteroids and Comets .

Asteroid 2001 FO32 Will Safely Pass by Earth March 21

Earth .

NASA Data Powers New USDA Soil Moisture Portal

Weather .

A Pioneering NASA Mini Weather Satellite Ends Its Mission

Climate Change .

NASA Satellites Help Quantify Forests’ Impacts on the Global Carbon Budget

Mars .

NASA’s Perseverance Pays Off Back Home

Explore More

Image .

Preparing WATSON for Borehole Descent

Image .

Fluorescence Map of a Greenland Borehole

Image .

WATSON's Field Test in Greenland

Image .

Suez Canal Crisis

Image .

Namibia Dunes

Topic .

Earth

Image .

Pacaya and Fuego Volcanoes, Guatemala

Image .

Mt. Etna--February 26, 2021

Image .

Mt. Etna February 2021

Image .

Tumbiana Stromatolite

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Visions of the Future
Slice of History
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Universe Newsletter
Social Media
RSS
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono