JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo

Spitzer and Hubble Capture Evolving Planetary Systems

Dec 09, 2004
This artist's concept depicts a distant hypothetical solar system, similar in age to our own. Looking inward from the system's outer fringes, a ring of dusty debris can be seen, and within it, planets circling a star the size of our Sun. This debris is all that remains of the planet-forming disk from which the planets evolved.

Two of NASA's Great Observatories, the Spitzer Space Telescope and the Hubble Space Telescope, have provided astronomers an unprecedented look at dusty planetary debris around stars the size of our Sun.

Two of NASA's Great Observatories, the Spitzer Space Telescope and the Hubble Space Telescope, have provided astronomers an unprecedented look at dusty planetary debris around stars the size of our Sun.

Spitzer has discovered for the first time dusty discs around mature, Sun-like stars known to have planets. Hubble captured the most detailed image ever of a brighter disc circling a much younger Sun-like star. The findings offer "snapshots" of the process by which our own solar system evolved, from its dusty and chaotic beginnings to its more settled present-day state.

"Young stars have huge reservoirs of planet-building materials, while older ones have only leftover piles of rubble. Hubble saw the reservoirs and Spitzer, the rubble," said Dr. Charles Beichman of NASA's Jet Propulsion Laboratory, Pasadena, Calif. He is lead author of the Spitzer study. "This demonstrates how the two telescopes complement each other," he added.

The young star observed by Hubble is 50 million to 250 million years old. This is old enough to theoretically have gas planets, but young enough that rocky planets like Earth may still be forming. The six older stars studied by Spitzer average 4 billion years old, nearly the same age as the Sun. They are known to have gas planets, and rocky planets may also be present. Prior to these findings, rings of planetary debris, or "debris discs," around stars the size of the Sun had rarely been observed, because they are fainter and more difficult to see than those around more massive stars.

"The new Hubble image gives us the best look so far at reflected light from a disc around a star the mass of the Sun," said Hubble study lead author, Dr. David Ardila of the Johns Hopkins University, Baltimore. "Basically, it shows one of the possible pasts of our own solar system," he said.

Debris discs around older stars the same size and age as our Sun, including those hosting known planets, are even harder to detect. These discs are 10 to 100 times thinner than the ones around young stars. Spitzer's highly sensitive infrared detectors were able to sense their warm glow for the first time.

"Spitzer has established the first direct link between planets and discs," Beichman said. "Now, we can study the relationship between the two." These studies will help future planet-hunting missions, including NASA's Terrestrial Planet Finder and the Space Interferometry Mission, predict which stars have planets. Finding and studying planets around other stars is a key goal of NASA's exploration mission.

Rocky planets arise out of large clouds of dust that envelop young stars. Dust particles collide and stick together until a planet eventually forms. Sometimes the accumulating bodies crash together and shatter. Debris from these collisions collects into giant doughnut-shaped discs, the centers of which may be carved out by orbiting planets. With time, the discs fade and a smaller, stable debris disc, like the comet-filled Kuiper Belt in our own solar system, is all that is left.

The debris disc imaged by Hubble surrounds the Sun-like star called HD 107146, located 88 light-years away. John Krist, a JPL astronomer, also used Hubble to capture another disc around a smaller star, a red dwarf called AU Microscopii, located 32 light-years away and only 12 million years old. The Hubble view reveals a gap in the disc, where planets may have swept up dust and cleared a path. The disc around HD 107146 also has an inner gap.

Beichman and his colleagues at JPL and the University of Arizona, Tucson, used Spitzer to scan 26 older Sun-like stars with known planets, and found six with Kuiper Belt-like debris discs. The stars range from 50 to 160 light-years away. Their discs are about 100 times fainter than those recently imaged by Hubble, and about 100 times brighter than the debris disc around the Sun. These discs are also punctuated by holes at their centers.

Both Hubble images were taken with the advanced camera for surveys. They will be published in the Astronomical Journal and the Astrophysical Journal Letters. The Spitzer observations are from the multiband imaging photometer and will appear in the Astrophysical Journal. Electronic images and additional information are available at: http://hubblesite.org/news/2004/33 and www.spitzer.caltech.edu.
+ Related images / animation
+ Full caption
+ Spitzer home page

News Media Contact

Donald Savage

(202) 358-1547

Whitney Clavin

626-395-1856

wclavin@caltech.edu

Ray Villard

410-338-4514

villard@stsci.edu

2004-285

Latest News

Exoplanets .

The 7 Rocky TRAPPIST-1 Planets May Be Made of Similar Stuff

Technology .

NASA’s DC-8 Returns to Flight

Solar System .

NASA’s Deep Space Network Welcomes a New Dish to the Family

Mars .

6 Things to Know About NASA’s Mars Helicopter on Its Way to Mars

Mars .

NASA to Host Virtual Briefing on February Perseverance Mars Rover Landing

Mars .

NASA InSight’s ‘Mole’ Ends Its Journey on Mars

Stars and Galaxies .

Citizen Scientists Help Create 3D Map of Cosmic Neighborhood

Mars .

Mars 2020 Perseverance Rover to Capture Sounds From the Red Planet

Solar System .

NASA’s Juno Mission Expands Into the Future

Mars .

NASA’s Curiosity Rover Reaches Its 3,000th Day on Mars

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono