JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Earth
.

Space Inflatables on the Rise 

Aug. 9, 2000

Large telescopes and structures 10 times the size of the Rose Bowl that can be compacted and deployed in a single small launch vehicle and then inflated once they are in orbit are a major part of the future of Earth and space exploration.

Large telescopes and structures 10 times the size of the Rose Bowl that can be compacted and deployed in a single small launch vehicle and then inflated once they are in orbit are a major part of the future of Earth and space exploration.

As part of the Gossamer Spacecraft Initiative, which is chartered with developing technology for large telescopes and space solar sails, scientists and engineers at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif., are identifying and exploring new ways to put large structures in space.

The result is breakthroughs in ultralight, inflatable materials that will substantially reduce mission costs and enable large, ultralight objects to observe the Earth. These breakthroughs will aid NASA researchers in their quest to explore the farthest reaches of the universe.

"Without new technology and new materials, we can't go forward. We need new materials, designs, and solutions," said Artur Chmielewski, manager of JPL Space Inflatables Technology. "We need very light, powerful telescopes that can peer deep into cosmos and look for Earth-like planets around other stars."

An important step in the technology development process is space testing of prototype inflatable systems. A past test program of inflatable technology, the Inflatable Antenna Experiment, deployed by the Space Shuttle Endeavour in 1996 provided significant data on the performance of inflatable systems. The 14-meter (about 46-foot) inflatable antenna was deployed and inflated for several hours in space. This successful demonstration of a tennis court-size inflatable structure in space has generated a lot of interest in the use of this promising new technology. Now, scientists are planning on- orbit tests to develop the technology further.

One of the first space applications of gossamer technology will be the Advanced Radio Interferometry between Space and Earth (ARISE) mission, which will use a high- resolution imaging technique called Space Very Long Baseline Interferometry (VLBI). An orbiting 25-meter (82-foot) inflatable radio telescope will be used in conjunction with ground telescopes to take pictures of space phenomena, such as neighborhoods around black holes, with a resolution 3,000 times better than that offered by the Hubble Space Telescope.

Innovators such as JPL's Dr. Mark Dragovan say that inflatable technology is the wave of the future. "Lightweight, flexible inflatable materials will someday replace traditional steel and glass materials on space antennas and telescopes to the point that the whole telescope will consist of a reflector and detector as thin as plastic kitchen wrap," he said. "The challenge for NASA is to launch structures that are one hundred times lower density than the Hubble Space Telescope. If the telescope is extremely low-mass, then one can make it very large and inexpensive in our quest to put big eyes in the sky."

Inflatables have a major advantage over mechanical structures because even in the most modern telescopes hundreds of pounds of steel and glass support a very thin reflecting surface that does all the work in collecting light from the cosmos. The alternative to these massive structures is inflatables, which are often 10 times less expensive, can be tightly packed into small canisters, and are lower mass, allowing launches on smaller, cheaper rockets.

The space applications for antennas many times the size of today's mechanical orbiting antennas include satellites for deep space and mobile communications, Earth observations, astronomical observations, and space-based radar. Solar-powered sails thinner than human hair for propelling spacecraft to the stars; sunshades the size of a soccer field for space telescopes; small flexible devices that make cellular phones obsolete; inflatable habitats for the moon or Mars; 24-meter (80-foot) antennas that can be held by one hand -- are all possible, according to scientists at JPL.

Future work on inflatables will concentrate on the areas of materials research, development of optical-quality telescopes and huge solar sail structures.

The Gossamer Spacecraft Initiative is managed jointly by JPL and NASA's Langley Research Center, Hampton, Virginia. NASA's Office of Space Science, Washington, D.C., has overall program management responsibility. Managed for NASA by the California Institute of Technology, JPL is the lead U.S. center for robotic exploration of the solar system.

News Media Contact

Carolina Martinez

(212) 460-4111

2000-076

Related News

Mars .

NASA’s Perseverance Rover Completes Mars Sample Depot

Solar System .

NASA’s Juno Team Assessing Camera After 48th Flyby of Jupiter

Solar System .

NASA’s Psyche Mission Continues Preparation for Launch in 2023

Earth .

NASA Measures Underground Water Flowing From Sierra to Central Valley

Solar System .

NASA’s Lunar Flashlight Team Assessing Spacecraft’s Propulsion System

Earth .

NASA Scientists and Satellites Make Sense of Earth’s Subtle Motions

Climate Change .

NASA Space Missions Pinpoint Sources of CO2 Emissions on Earth

Earth .

Watch the Latest Water Satellite Unfold Itself in Space

Mars .

NASA Explores a Winter Wonderland on Mars

Solar System .

Juno Spacecraft Recovering Memory After 47th Flyby of Jupiter

Explore More

Image .

London, England Parks

Image .

NASA's Psyche: Picking up Launch Prep for 2023

Event Feb. 16, 2023 .

Perseverance: Two Years on Mars

Mission .

Ranger 1

Mission .

Surface Water and Ocean Topography

Image .

Lunar Flashlight's Trajectory Correction Maneuver (Illustration)

Image .

California Atmospheric River Storms Captured by NASA's AIRS

Image .

Potosi, Bolivia

Image .

NASA's Lunar Flashlight Spotted From Earth on Its Way to the Moon

Image .

NEO Surveyor in an Infrared Starfield Filled With Asteroids (Illustration)

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018