JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Technology
.

Solar Electric Propulsion Makes NASA’s Psyche Spacecraft Go

Sept. 20, 2021
NASA's Psyche spacecraft is photographed in July 2021 during the mission's assembly, test, and launch operations phase at JPL. Hall thrusters will propel the spacecraft to its target in the main asteroid belt.
NASA's Psyche spacecraft is photographed in July 2021 during the mission's assembly, test, and launch operations phase at JPL. Hall thrusters will propel the spacecraft to its target in the main asteroid belt.
Credit: NASA/JPL-Caltech
Full Image Details
Engineers at NASA's Jet Propulsion Laboratory work to integrate Hall thrusters into the agency's Psyche spacecraft in July 2021. One of the thrusters is visible on the side of the spacecraft underneath a red protective cover.
Engineers at NASA's Jet Propulsion Laboratory work to integrate Hall thrusters into the agency's Psyche spacecraft in July 2021. One of the thrusters is visible on the side of the spacecraft underneath a red protective cover.
Credit: NASA/JPL-Caltech
Full Image Details
At NASA's Jet Propulsion Laboratory, engineers prepare to integrate four Hall thrusters onto the agency's Psyche spacecraft. The thrusters will propel Psyche to its target in the main asteroid belt.
At NASA's Jet Propulsion Laboratory, engineers prepare to integrate four Hall thrusters onto the agency's Psyche spacecraft. The thrusters will propel Psyche to its target in the main asteroid belt.
Credit: NASA/JPL-Caltech
Full Image Details

This illustration depicts NASA’s Psyche spacecraft, set to launch in August 2022. Credit: NASA/JPL-Caltech/ASU Full Image Details

EDITOR’S NOTE: Corrections have been made to the speed at which the Psyche spacecraft will eventually travel and to how much more propellant traditional chemical thrusters would require relative to the amount of xenon Psyche will use.

Futuristic electric thrusters emitting a cool blue glow will guide the Psyche spacecraft through deep space to a metal-rich asteroid.

When it comes time for NASA’s Psyche spacecraft to power itself through deep space, it’ll be more brain than brawn that does the work. Once the stuff of science fiction, the efficient and quiet power of electric propulsion will provide the force that propels the Psyche spacecraft all the way to the main asteroid belt between Mars and Jupiter. The orbiter’s target: a metal-rich asteroid also called Psyche.

The spacecraft will launch in August 2022 and travel about 1.5 billion miles (2.4 billion kilometers) over three and a half years to get to the asteroid, which scientists believe may be part of the core of a planetesimal, the building block of an early rocky planet. Once in orbit, the mission team will use the payload of science instruments to investigate what this unique target can reveal about the formation of rocky planets like Earth.

The spacecraft will rely on the large chemical rocket engines of the Falcon Heavy launch vehicle to blast off the launchpad and to escape Earth’s gravity. But the rest of the journey, once Psyche separates from the launch vehicle, will rely on solar electric propulsion. This form of propulsion starts with large solar arrays that convert sunlight into electricity, providing the power source for the spacecraft’s thrusters. They’re known as Hall thrusters, and the Psyche spacecraft will be the first to use them beyond the orbit of our Moon.

At left, xenon plasma emits a blue glow from an electric Hall thruster identical to those that will propel NASA's Psyche spacecraft to the main asteroid belt. On the right is a similar non-operating thruster.
At left, xenon plasma emits a blue glow from an electric Hall thruster identical to those that will propel NASA's Psyche spacecraft to the main asteroid belt. On the right is a similar non-operating thruster.
Credit: NASA/JPL-Caltech
Full Image Details

For propellant, Psyche will carry tanks full of xenon, the same neutral gas used in car headlights and plasma TVs. The spacecraft’s four thrusters will use electromagnetic fields to accelerate and expel charged atoms, or ions, of that xenon. As those ions are expelled, they create thrust that gently propels Psyche through space, emitting blue beams of ionized xenon.

In fact, the thrust is so gentle, it exerts about the same amount of pressure you’d feel holding three quarters in your hand. But it’s enough to accelerate Psyche through deep space. With no atmospheric drag to hold it back, the spacecraft eventually will accelerate to speeds of up to 124,000 miles per hour (200,000 kilometers per hour) relative to Earth.

Because they’re so efficient, Psyche’s Hall thrusters could operate nearly nonstop for years without running out of fuel. Psyche will carry 2,030 pounds (922 kilograms) of xenon in its tanks; engineers estimate that the mission would burn through about 15 times that amount of propellant if it had to use traditional chemical thrusters.

“Even in the beginning, when we were first designing the mission in 2012, we were talking about solar electric propulsion as part of the plan. Without it, we wouldn’t have the Psyche mission,” said Arizona State University’s Lindy Elkins-Tanton, who as principal investigator leads the mission. “And it’s become part of the character of the mission. It takes a specialized team to calculate trajectories and orbits using solar electric propulsion.”

Get the Latest JPL News

SUBSCRIBE TO THE NEWSLETTER

A Gentle Maneuver

Psyche will launch from the historic Pad 39A at NASA’s Kennedy Space Center. The Falcon Heavy will place the spacecraft on a trajectory to fly by Mars for a gravity assist seven months later, in May 2023. In early 2026, the thrusters will do the delicate work of getting the spacecraft into orbit around asteroid Psyche, using a bit of ballet to back into orbit around its target.

That task will be especially tricky because of how little scientists know about the asteroid, which appears as only a tiny dot of light in telescopes. Ground-based radar suggests it’s about 140 miles (226 kilometers) wide and potato-shaped, which means that scientists won’t know until they get there how exactly its gravity field works. As the mission conducts its science investigation over 21 months, navigation engineers will use the electric propulsion thrusters to fly the spacecraft through a progression of orbits that gradually bring the spacecraft closer and closer to Psyche.

NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission, used a similar propulsion system with the agency’s Deep Space 1, which launched in 1998 and flew by an asteroid and a comet before the mission ended in 2001. Next came Dawn, which used solar electric propulsion to travel to and orbit the asteroid Vesta and then the protoplanet Ceres. The first spacecraft ever to orbit two extraterrestrial targets, the Dawn mission lasted 11 years, ending in 2018 when it used up the last of the hydrazine propellant used to maintain its orientation.

Partners in Propulsion

Maxar Technologies has been using solar electric propulsion to power commercial communications satellites for decades. But for Psyche, they needed to adapt the superefficient Hall thrusters to fly in deep space, and that’s where JPL engineers came in. Both teams hope that Psyche, by using Hall thrusters for the first time beyond lunar orbit, will help push the limits of solar electric propulsion.

“Solar electric propulsion technology delivers the right mix of cost savings, efficiency, and power and could play an important role in supporting future science missions to Mars and beyond,” said Steven Scott, Maxar’s Psyche program manager.

Along with supplying the thrusters, Maxar’s team in Palo Alto, California, was responsible for building the spacecraft’s van-size chassis, which houses the electrical system, the propulsion systems, the thermal system, and the guidance and navigation system. When fully assembled, Psyche will move into JPL’s huge thermal vacuum chamber for testing that simulates the environment of deep space. By next spring, the spacecraft will ship from JPL to Cape Canaveral for launch.

More About the Mission

ASU leads the mission. JPL is responsible for the mission’s overall management, system engineering, integration and testing, and mission operations. Psyche is the 14th mission selected as part of NASA’s Discovery Program.

For more information about NASA’s Psyche mission go to:

http://www.nasa.gov/psyche

https://psyche.asu.edu/

Meet asteroid Psyche
Psyche spacecraft chassis arrives at JPL

News Media Contact

Gretchen McCartney

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-6215

gretchen.p.mccartney@jpl.nasa.gov

Karin Valentine

ASU School of Earth and Space Exploration, Tempe, AZ

480-965-9345

karin.valentine@asu.edu

Karen Fox / Josh Handal

NASA Headquarters, Washington

301-286-6284 / 202-358-1600

karen.c.fox@nasa.gov / joshua.a.handal@nasa.gov

Kristin Carringer

Maxar Media Relations

303-684-4352

kristin.carringer@maxar.com

2021-195

Related News

Technology .

NASA’s Quantum Detector Achieves World-Leading Milestone

Asteroids and Comets .

NASA’s Planetary Radar Captures Detailed View of Oblong Asteroid

Asteroids and Comets .

Webb Detects Extremely Small Main Belt Asteroid

Technology .

NASA Spinoffs Bolster Climate Resilience, Improve Medical Care, More

Asteroids and Comets .

NASA System Predicts Small Asteroid to Pass Close by Earth This Week

Asteroids and Comets .

Construction Begins on NASA’s Next-Generation Asteroid Hunter

Technology .

Moon Water Imager Integrated With NASA’s Lunar Trailblazer

Robotics .

NASA Is Testing a New Robotic Arm That Really Knows How to Chill Out

Solar System .

NASA’s Europa Clipper Gets Its Wheels for Traveling in Deep Space

Asteroids and Comets .

NASA Program Predicted Impact of Small Asteroid Over Ontario, Canada

Explore More

Mission .

Deep Space Network

Mission .

Lunar Flashlight

Mission .

Psyche

Event Oct. 13, 2022 .

Near Earth Objects – Opportunities for Discoveries

Topic .

Technology

Mission .

Near Earth Asteroid Scout

Mission .

SunRISE

Mission .

Large Binocular Telescope Interferometer

Mission .

Deep Space Atomic Clock

Mission .

RainCube

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018