JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

SHERLOC to Micro-Map Mars Minerals and Carbon Rings

Jul 31, 2014
This diagram shows components of the investigations payload for NASA's Mars 2020 rover mission.› Full image and caption
Credit: NASA/JPL-Caltech
This illustration depicts the mechanism and conceptual research targets for an instrument named Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals, or SHERLOC. This instrument has been selected as one of seven investigations for the payload of NASA's Mars 2020 rover mission. SHERLOC will be a spectrometer that will provide fine-scale imaging and use an ultraviolet laser to determine fine-scale mineralogy and detect organic compounds.› Full image and caption
Credit: NASA/JPL-Caltech

One of the seven instruments chosen for the payload of NASA's next Mars rover would detect key minerals and carbon chemicals and show where they are, at microscopic scale.

An ultraviolet-light instrument on the robotic arm of NASA's Mars 2020 rover will use two types of ultraviolet-light spectroscopy, plus a versatile camera, to help meet the mission's ambitious goals, including a search for signs of past life on Mars and selection of rock samples for possible return to Earth.

It is called SHERLOC, for Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals.

"This instrument uses two distinct detection strategies," said its principal investigator, Luther Beegle of NASA's Jet Propulsion Laboratory in Pasadena, California. "It can detect an important class of carbon molecules with high sensitivity, and it also identifies minerals that provide information about ancient aqueous environments."

SHERLOC will shine a tiny dot of ultraviolet laser light at a target. This causes two different spectral phenomena to occur, which the instrument captures for analysis. The first is a distinctive fluorescence, or glow, from molecules that contain rings of carbon atoms. Such molecules may be clues to whether evidence of past life has been preserved. The second is an effect called Raman scattering, which can identify certain minerals, including ones formed from evaporation of salty water, and organic compounds. This dual use enables powerful analysis of many different compounds on the identical spot.

A moving mirror in the instrument will shift pointing of the ultraviolet laser beam in a scanning pattern to provide a map of the ingredients at a microscopic scale. The laser beam has a diameter of 50 microns -- about half the thickness of a piece of paper. It will provide information on that scale within a target area about half the breadth of a dime.

In addition, the instrument will include a contextual camera utilizing hardware originally developed by Malin Space Science Systems, San Diego, for the Mars Hand Lens Imager (MAHLI) camera on NASA's Curiosity Mars rover. This context imager will enable researchers to correlate the composition information with visible features in the target, resulting in more information than composition alone.

Beegle said, "We'll be able not just to detect these chemicals and minerals with high sensitivity, but we will produce powerful chemical maps. For example, we can see whether organics are clumped together or diffuse, and we can correlate minerals with visible veins or grains in the rock. This also allows us to integrate our results with the other instruments for even more informational content on the samples."

NASA announced selection of SHERLOC and six other investigations for the Mars 2020 rover's payload on July 31, 2014.

The Mars 2020 mission will be based on the design of the highly successful Mars Science Laboratory rover, Curiosity, which landed almost two years ago, and currently is operating on Mars. The new rover will carry more sophisticated, upgraded hardware and new instruments to conduct geological assessments of the rover's landing site, determine the potential habitability of the environment, and directly search for signs of ancient Martian life.

Scientists will use the Mars 2020 rover to identify and select a collection of rock and soil samples that will be stored for potential return to Earth by a future mission. The Mars 2020 mission is responsive to the science objectives recommended by the National Research Council's 2011 Planetary Science Decadal Survey.

The Mars 2020 rover also will help advance our knowledge of how future human explorers could use natural resources available on the surface of the Red Planet. An ability to live off the Martian land would transform future exploration of the planet. Designers of future human expeditions can use this mission to understand the hazards posed by Martian dust and demonstrate technology to process carbon dioxide from the atmosphere to produce oxygen. These experiments will help engineers learn how to use Martian resources to produce oxygen for human respiration and potentially for use as an oxidizer for rocket fuel.

The California Institute of Technology, Pasadena, manages JPL for NASA.

› NASA Announces Mars 2020 Rover Payload
› PIXL Instrument

News Media Contact

Guy Webster

818-354-6278

guy.webster@jpl.nasa.gov

2014-254

Related News

Mars .

NASA’s Mars Helicopter to Make First Flight Attempt

Mars .

NASA’s Odyssey Orbiter Marks 20 Historic Years of Mapping Mars

Solar System .

Probing for Life in the Icy Crusts of Ocean Worlds

Mars .

NASA’s First Weather Report From Jezero Crater on Mars

Mars .

NASA Invites Public to Take Flight With Ingenuity Mars Helicopter

Mars .

NASA’s Mars Helicopter Survives First Cold Martian Night on Its Own

Mars .

Sensors Collect Crucial Data on Mars Landings With Arrival of Perseverance

Mars .

NASA’s InSight Detects Two Sizable Quakes on Mars

Solar System .

NASA’s Europa Clipper Builds Hardware, Moves Toward Assembly

Mars .

NASA’s Curiosity Mars Rover Takes Selfie With ‘Mont Mercou’

Explore More

Image .

Goldstone Radar Observations of Asteroid 2001 FO32

Video .

What's Up - April 2021

Image .

Europa Clipper Spacecraft (Illustration)

Image .

Europa Imaging System Wide Angle Camera

Image .

Faraday Cups Up Close: NASA's Europa Clipper

Image .

Europa Clipper's Thermal Tubing

Image .

Europa Imaging System Narrow Angle Camera

Image .

Europa Clipper REASON Testing on the Mesa

Image .

Europa Clipper's Europa Imaging System in the Works

Image .

Preparing NASA's Europa Clipper's Plasma Instrument

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Visions of the Future
Slice of History
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Universe Newsletter
Social Media
RSS
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono