JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

Science Team Outlines Goals for NASA's 2020 Mars Rover

Jul 09, 2013
Planning for NASA's 2020 Mars rover envisions a basic structure that capitalizes on the design and engineering work done for the NASA rover Curiosity, which landed on Mars in 2012.› Full image and caption
Credit: NASA/JPL-Caltech |
Observations at large scales, such as panoramas of Martian landscapes, help researchers identify smaller-scale features of special interest for examination in more detail.› Full image and caption
Credit: NASA/JPL-Caltech/MSSS
These two images illustrate the value of being able to identify different compositions at very small scales. Left› Full image and caption
Credit: NASA/JPL-Caltech/LANL/CNES/IRAP/LPGNantes/CNRS/LGLyon/Planet-Terre Right
This shows one prototype for hardware to cache samples of cores drilled from Martian rocks for possible future return to Earth.› Full image and caption
Credit: NASA/JPL-Caltech
Seeking signs of past life on Mars would be a multi-step process, according to the Science Definition Team for NASA's Mars 2020 mission.› Full image and caption
Credit: NASA/JPL-Caltech

A new report provided to NASA details science objectives for the rover the agency will send to Mars in 2020.

WASHINGTON -- The rover NASA will send to Mars in 2020 should look for signs of past life, collect samples for possible future return to Earth, and demonstrate technology for future human exploration of the Red Planet, according to a report provided to the agency.

The 154-page document was prepared by the Mars 2020 Science Definition Team, which NASA appointed in January to outline scientific objectives for the mission. The team, composed of 19 scientists and engineers from universities and research organizations, proposed a mission concept that could accomplish several high-priority planetary science goals and be a major step in meeting President Obama's challenge to send humans to Mars in the 2030s.

"Crafting the science and exploration goals is a crucial milestone in preparing for our next major Mars mission," said John Grunsfeld, NASA's associate administrator for science in Washington. "The objectives determined by NASA with the input from this team will become the basis later this year for soliciting proposals to provide instruments to be part of the science payload on this exciting step in Mars exploration."

NASA will conduct an open competition for the payload and science instruments. They will be placed on a rover similar to Curiosity, which landed on Mars almost a year ago. Using Curiosity's design will help minimize mission costs and risks and deliver a rover that can accomplish the mission objectives.

The 2020 mission proposed by the Science Definition Team would build upon the accomplishments of Curiosity and other Mars missions. The Spirit and Opportunity rovers, along with several orbiters, found evidence Mars has a watery history. Curiosity recently confirmed that past environmental conditions on Mars could have supported living microbes. According to the Science Definition Team, looking for signs of past life is the next logical step.

The team's report details how the rover would use its instruments for visual, mineralogical and chemical analysis down to microscopic scale to understand the environment around its landing site and identify biosignatures, or features in the rocks and soil that could have been formed biologically.

"The Mars 2020 mission concept does not presume that life ever existed on Mars," said Jack Mustard, chairman of the Science Definition Team and a professor at the Geological Sciences at Brown University in Providence, R.I. "However, given the recent Curiosity findings, past Martian life seems possible, and we should begin the difficult endeavor of seeking the signs of life. No matter what we learn, we would make significant progress in understanding the circumstances of early life existing on Earth and the possibilities of extraterrestrial life."

The measurements needed to explore a site on Mars to interpret ancient habitability and the potential for preserved biosignatures are identical to those needed to select and cache samples for future return to Earth. The Science Definition Team is proposing the rover collect and package as many as 31 samples of rock cores and soil for a later mission to bring back for more definitive analysis in laboratories on Earth. The science conducted by the rover's instruments would expand our knowledge of Mars and provide the context needed to make wise decisions about whether to return the samples to Earth.

"The Mars 2020 mission will provide a unique capability to address the major questions of habitability and life in the solar system," said Jim Green, director of NASA's Planetary Science Division in Washington. "This mission represents a major step towards creating high-value sampling and interrogation methods, as part of a broader strategy for sample returns by planetary missions."

Samples collected and analyzed by the rover will help inform future human exploration missions to Mars. The rover could make measurements and technology demonstrations to help designers of a human expedition understand any hazards posed by Martian dust and demonstrate how to collect carbon dioxide, which could be a resource for making oxygen and rocket fuel. Improved precision landing technology that enhances the scientific value of robotic missions also will be critical for eventual human exploration on the surface.

NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages NASA's Mars Exploration Program for the NASA Science Mission Directorate, Washington.

The complete Science Definition Team report is available online at: http://mars.jpl.nasa.gov/m2020/ .

For more information about NASA's Mars programs, visit: http://www.nasa.gov/mars .

News Media Contact

Dwayne Brown

202-358-1726

dwayne.c.brown@nasa.gov

Guy Webster

818-354-6278

guy.webster@jpl.nasa.gov

2013-217

Related News

Mars .

NASA Awards Mars Ascent Propulsion System Contract for Sample Return

Mars .

NASA to Provide Update on Perseverance ‘Firsts’ Since Mars Landing

Mars .

NASA to Reveal New Video, Images From Mars Perseverance Rover

Mars .

NASA's Mars Perseverance Rover Provides Front-Row Seat to Landing, First Audio Recording of Red Planet

Mars .

NASA’s Perseverance Rover Sends Sneak Peek of Mars Landing

Mars .

NASA’s Mars Helicopter Reports In

Mars .

Touchdown! NASA’s Mars Perseverance Rover Safely Lands on Red Planet

Mars .

Searching for Life in NASA’s Perseverance Mars Samples

Mars .

The Mars Relay Network Connects Us to NASA’s Martian Explorers

Mars .

NASA Invites Public to Share Thrill of Mars Perseverance Rover Landing

Explore More

Video .

What's Up - March 2021

Image .

Deep Jet Streams in Jupiter's Atmosphere

Image .

Power On: Psyche Spacecraft

Video .

What's Up - February 2021

Image .

Juno's Mission Goes On

Topic .

Solar System

Image .

Jupiter's Storm Oval BA As Viewed By An Artist

Image .

Jupiter North Pole Detail

Image .

A Hot Spot on Jupiter

Image .

A Jupiter Circumpolar Cyclone

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Visions of the Future
Slice of History
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Universe Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono