JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

Saturn's Moon Titan Drifting Away Faster Than Previously Thought

June 8, 2020
A giant of a moon appears before a giant of a planet undergoing seasonal changes in this natural color view of Titan and Saturn from NASA's Cassini spacecraft.
A giant of a moon appears before a giant of a planet undergoing seasonal changes in this natural color view of Titan and Saturn from NASA's Cassini spacecraft.
Credit: NASA/JPL-Caltech/Space Science Institute
Full Image Details

The new research by scientists at NASA and the Italian Space Agency has implications for the entire Saturn system as well as other planets and moons.

Just as our own Moon floats away from Earth a tiny bit more each year, other moons are doing the same with their host planets. As a moon orbits, its gravity pulls on the planet, causing a temporary bulge in the planet as it passes.

Over time, the energy created by the bulging and subsiding transfers from the planet to the moon, nudging it farther and farther out. Our Moon drifts 1.5 inches (3.8 centimeters) from Earth each year.

Scientists thought they knew the rate at which the giant moon Titan is moving away from Saturn, but they recently made a surprising discovery: Using data from NASA's Cassini spacecraft, they found Titan drifting a hundred times faster than previously understood - about 4 inches (11 centimeters) per year.

The findings may help address an age-old question. While scientists know that Saturn formed 4.6 billion years ago in the early days of the solar system, there's more uncertainty about when the planet's rings and its system of more than 80 moons formed. Titan is currently 759,000 miles (1.2 million kilometers) from Saturn. The revised rate of its drift suggests that the moon started out much closer to Saturn, which would mean the whole system expanded more quickly than previously believed.

"This result brings an important new piece of the puzzle for the highly debated question of the age of the Saturn system and how its moons formed," said Valery Lainey, lead author of the work published June 8 in Nature Astronomy. He conducted the research as a scientist at NASA's Jet Propulsion Laboratory in Southern California before joining the Paris Observatory at PSL University.

To learn more about Saturn, zoom in and give the planet a spin. Use the search function at bottom to learn more about its moons - or just about anything else in the solar system. View the full interactive experience at Eyes on the Solar System. Credit: NASA/JPL-Caltech

Making Sense of Moon Migration

The findings on Titan's rate of drift also provide important confirmation of a new theory that explains and predicts how planets affect their moons' orbits.

For the last 50 years, scientists have applied the same formulas to estimate how fast a moon drifts from its planet, a rate that can also be used to determine a moon's age. Those formulas and the classical theories on which they're based were applied to moons large and small all over the solar system. The theories assumed that in systems such as Saturn's, with dozens of moons, the outer moons like Titan migrated outward more slowly than moons closer in because they are farther from their host planet's gravity.

Four years ago, theoretical astrophysicist Jim Fuller, now of Caltech, published research that upended those theories. Fuller's theory predicted that outer moons can migrate outward at a similar rate to inner moons because they become locked in a different kind of orbit pattern that links to the particular wobble of a planet and slings them outward.

"The new measurements imply that these kind of planet-moon interactions can be more prominent than prior expectations and that they can apply to many systems, such as other planetary moon systems, exoplanets - those outside our solar system - and even binary star systems, where stars orbit each other," said Fuller, a coauthor of the new paper.

To reach their results, the authors mapped stars in the background of Cassini images and tracked Titan's position. To confirm their findings, they compared them with an independent dataset: radio science data collected by Cassini. During ten close flybys between 2006 and 2016, the spacecraft sent radio waves to Earth. Scientists studied how the signal's frequency was changed by their interactions with their surroundings to estimate how Titan's orbit evolved.

"By using two completely different datasets, we obtained results that are in full agreement, and also in agreement with Jim Fuller's theory, which predicted a much faster migration of Titan," said coauthor Paolo Tortora, of Italy's University of Bologna. Tortora is a member of the Cassini Radio Science team and worked on the research with the support of the Italian Space Agency.

Managed by JPL, Cassini was an orbiter that observed Saturn for more than 13 years before exhausting its fuel supply. The mission plunged it into the planet's atmosphere in September 2017, in part to protect its moon Enceladus, which Cassini discovered might hold conditions suitable for life.

The Cassini-Huygens mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. JPL, a division of Caltech in Pasadena, manages the mission for NASA's Science Mission Directorate in Washington. JPL designed, developed and assembled the Cassini orbiter.

More information about Cassini can be found here:

https://solarsystem.nasa.gov/cassini

The Grand Finale: Revisit Cassini's spectacular finish
Why is Saturn's upper atmosphere so hot?

News Media Contact

Gretchen McCartney

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-6215

gretchen.p.mccartney@jpl.nasa.gov

Grey Hautaluoma / Alana Johnson

NASA Headquarters, Washington

202-358-0668 / 202-358-1501

grey.hautaluoma-1@nasa.gov / alana.r.johnson@nasa.gov

2020-105

Related News

Solar System .

NASA Invites Public to Sign Poem That Will Fly Aboard Europa Clipper

Solar System .

NASA to Discuss Conclusions of Psyche Mission Independent Review Board

Solar System .

NASA Scientists Make First Observation of a Polar Cyclone on Uranus

Mars .

NASA’s Perseverance Rover Captures View of Mars’ Belva Crater

Solar System .

NASA’s Lunar Flashlight to Fly by Earth

Solar System .

NASA’s Juno Mission Getting Closer to Jupiter’s Moon Io

Solar System .

NASA Calls End to Lunar Flashlight After Some Tech Successes

Mars .

Images From NASA’s Perseverance May Show Record of Wild Martian River

Solar System .

New Study of Uranus’ Large Moons Shows 4 May Hold Water

Solar System .

New Video Series Captures Team Working on NASA’s Europa Clipper

Explore More

Solar System .

Space Trivia Question

Image .

'Castell Henllys' From Above

Image .

Leading Up to Flight 50

Mission .

Surveyor 4

Image .

Uranus Cyclone With Color Added

Image .

Perseverance Takes in View at Belva Crater

Image .

4 JunoCam Views of Jovian Moon Io

Image .

Juno Getting Closer to Jovian Moon Io

Image .

Io in Color and Infrared

Image .

4 Looks at Io Volcanoes

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018