JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

Potential Plumes on Europa Could Come From Water in the Crust

Nov 13, 2020
This illustration of Jupiter's icy moon Europa depicts a cryovolcanic eruption in which brine from within the icy shell could blast into space. A new model proposing this process may also shed light on plumes on other icy bodies.
Credit: Justice Wainwright

Scientists have theorized on the origin of the water plumes possibly erupting from Jupiter's moon Europa. Recent research adds a new potential source to the mix.

Plumes of water vapor that may be venting into space from Jupiter's moon Europa could come from within the icy crust itself, according to new research. A model outlines a process for brine, or salt-enriched water, moving around within the moon's shell and eventually forming pockets of water - even more concentrated with salt - that could erupt.

Europa scientists have considered the possible plumes on Europa a promising way to investigate the habitability of Jupiter's icy moon, especially since they offer the opportunity to be directly sampled by spacecraft flying through them. The insights into the activity and composition of the ice shell covering Europa's global, interior ocean can help determine if the ocean contains the ingredients needed to support life.

Get the Latest JPL News

Subscribe to the Newsletter

This new work that offers an additional scenario for some plumes proposes that they may originate from pockets of water embedded in the icy shell rather than water forced upward from the ocean below. The source of the plumes is important: Water originating from the icy crust is considered less hospitable to life than the global interior ocean because it likely lacks the energy that is a necessary ingredient for life. In Europa's ocean, that energy could come from hydrothermal vents on the sea floor.

"Understanding where these water plumes are coming from is very important for knowing whether future Europa explorers could have a chance to actually detect life from space without probing Europa's ocean," said lead author Gregor Steinbrügge, a postdoctoral researcher at Stanford's School of Earth, Energy & Environmental Sciences.

Using images collected by NASA's Galileo spacecraft, the researchers developed a model to propose how a combination of freezing and pressurization could lead to a cryovolcanic eruption, or a burst of frigid water. The results, published Nov. 10 in Geophysical Research Letters, may shed light on eruptions on other icy bodies in the solar system.

The researchers focused their analyses on Manannán, an 18-mile-wide (29-kilometer-wide) crater on Europa that resulted from an impact with another celestial object tens of millions of years ago. Reasoning that such a collision would have generated tremendous heat, they modeled how the melted ice and subsequent freezing of the water pocket within the icy shell could have pressurized it and caused the water to erupt.

"The comet or asteroid hitting the ice shell was basically a big experiment which we're using to construct hypotheses to test," said co-author Don Blankenship, senior research scientist at the University of Texas Institute for Geophysics (UTIG) and principal investigator of the radar instrument, REASON (Radar for Europa Assessment and Sounding: Ocean to Near-surface), that will fly aboard NASA's upcoming Europa Clipper spacecraft. "Our model makes specific predictions we can test using data from the radar and other instruments on Europa Clipper."

The model indicates that as Europa's water partially froze into ice following the impact, leftover pockets of water could have been created in the moon's surface. These salty water pockets can move sideways through Europa's ice shell by melting adjacent regions of ice and consequently become even saltier in the process.

A Salty Driving Force

The model proposes that when a migrating brine pocket reached the center of Manannán Crater, it became stuck and began freezing, generating pressure that eventually resulted in a plume, estimated to have been over a mile high (1.6 kilometers). The eruption of this plume left a distinguishing mark: a spider-shaped feature on Europa's surface that was observed by Galileo imaging and incorporated into the researchers' model.

"Even though plumes generated by brine pocket migration would not provide direct insight into Europa's ocean, our findings suggest that Europa's ice shell itself is very dynamic," said co-lead author Joana Voigt, a graduate research assistant at the University of Arizona, in Tucson.

The relatively small size of the plume that would form at Manannán indicates that impact craters probably can't explain the source of other, larger plumes on Europa that have been hypothesized based on data from Galileo and NASA's Hubble Space Telescope, researchers said. But the process modeled for the Manannán eruption could happen on other icy bodies - even without an impact event.

"The work is exciting, because it supports the growing body of research showing there could be multiple kinds of plumes on Europa," said Robert Pappalardo of NASA's Jet Propulsion Laboratory in Southern California and project scientist of the Europa Clipper mission. "Understanding plumes and their possible sources strongly contributes to Europa Clipper's goal to investigate Europa's habitability."

Missions such as Europa Clipper help contribute to the field of astrobiology, the interdisciplinary research on the variables and conditions of distant worlds that could harbor life as we know it. While Europa Clipper is not a life-detection mission, it will conduct detailed reconnaissance of Europa and investigate whether the icy moon, with its subsurface ocean, has the capability to support life. Understanding Europa's habitability will help scientists better understand how life developed on Earth and the potential for finding life beyond our planet.

More information about Europa and Europa Clipper can be found here:

europa.nasa.gov

Evidence of Europa plumes hidden in old data from NASA's Galileo
NASA's Europa Clipper to investigate icy moon's habitability

News Media Contact

Gretchen McCartney

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-6215

gretchen.p.mccartney@jpl.nasa.gov

Grey Hautaluoma / Alana Johnson

NASA Headquarters, Washington

202-358-0668 / 202-358-1501

grey.hautaluoma-1@nasa.gov / alana.r.johnson@nasa.gov

Danielle Torrent Tucker

Stanford University School of Earth, Energy & Environmental Sciences

650-725-7861

dttucker@stanford.edu

2020-218

Related News

Mars .

NASA’s Perseverance Rover 22 Days From Mars Landing

Solar System .

NASA’s Deep Space Network Welcomes a New Dish to the Family

Mars .

6 Things to Know About NASA’s Mars Helicopter on Its Way to Mars

Mars .

NASA to Host Virtual Briefing on February Perseverance Mars Rover Landing

Mars .

NASA InSight’s ‘Mole’ Ends Its Journey on Mars

Mars .

Mars 2020 Perseverance Rover to Capture Sounds From the Red Planet

Solar System .

NASA’s Juno Mission Expands Into the Future

Mars .

NASA’s Curiosity Rover Reaches Its 3,000th Day on Mars

Mars .

NASA Extends Exploration for Two Planetary Science Missions

Mars .

Celebrate the Perseverance Rover Landing With NASA's Student Challenge

Explore More

Image .

Juno's Mission Goes On

Topic .

Solar System

Image .

A Hot Spot on Jupiter

Image .

Jupiter's Storm Oval BA As Viewed By An Artist

Image .

Two Views of Jupiter Hot Spot

Image .

A Jupiter Circumpolar Cyclone

Image .

Jupiter North Pole Detail

Video .

What's Up - January 2021

Image .

All Eight Northern Circumpolar Cyclones in 2020

Image .

Tracking Clouds on Jupiter

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono