JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Earth
.

OPALS: Light Beams Let Data Rates Soar

Dec. 9, 2014
This artist's rendition shows OPALS operating from the International Space Station.› Full image and caption
Credit: NASA/JPL-Caltech
OPALS communicates with the Optical Communications Telescope Laboratory (OCTL) dome, located in Table Mountain, California.› Full image and caption
Credit: NASA/JPL-Caltech

You may know opals as fiery gemstones, but something special called OPALS is floating above us in space.

You may know opals as fiery gemstones, but something special called OPALS is floating above us in space. On the International Space Station, the Optical Payload for Lasercomm Science (OPALS) is demonstrating how laser communications can speed up the flow of information between Earth and space, compared to radio signals.

"OPALS has shown that space-to-ground laser communications transmissions are practical and repeatable," said Matthew Abrahamson, OPALS mission manager at NASA's Jet Propulsion Laboratory in Pasadena, California. "As a bonus, OPALS has collected an enormous amount of data to advance the science of sending lasers through the atmosphere. We look forward to continuing our testing of this technology, which sends information to and from space faster than with radio signals."

Laser communication science has Earth benefits, too. Faster downlinks from space could mean people receive higher-definition video from both satellites orbiting our planet and spacecraft farther into space, including NASA's Mars rovers. Laser communication technology also has the potential to provide faster Internet connections in remote areas on Earth. Anyone with an interest in high-speed, high-quality downloads may benefit from this technology -- including researchers, engineers and consumers.

OPALS has completed its four-month prime mission. In the next phase of the mission, OPALS scientists will look at how adaptive optics can increase the efficiency of the optical communications link. The lessons learned from OPALS will make future optical links more robust and reliable.

OPALS launched to the space station aboard a SpaceX Dragon cargo capsule in April. The payload was able to establish an optical communications link when its laser locked onto a ground beacon emitted by the Optical Communications Telescope Laboratory's ground station at JPL's Table Mountain Observatory in Wrightwood, California. The technology uses a beacon with four individual lasers to average the effects of atmospheric turbulence.

"Four lasers from the ground station travel through the sky toward the space station. Under clear, dark background conditions, it's very easy for the payload to acquire the ground beacon. Daylight conditions have proven more challenging, but we are working on increasing capabilities during the day as well, through software enhancements," Abrahamson said.

OPALS had 18 successful passes from Table Mountain: nine during daylight and nine during nighttime. The payload was able to track the ground receiver with stunning accuracy.

"At times, weather was a challenge, with clouds obscuring the lasers. The payload showed the capability to reacquire the signal after cloud blockage," Abrahamson said.

OPALS had its first success on June 5, a night pass lasting 148 seconds. It sent a copy of the same video (with the message, "Hello, World!") every 3.5 seconds. With traditional downlink methods, the 175-megabit video would take 10 minutes to transmit.

OPALS has also downlinked text. Lewis Carroll's "Alice's Adventures in Wonderland" was transmitted multiple times from the payload to the ground in June.

In July, OPALS sent a high-definition video of the 1969 Apollo 11 moon landing, honoring the 45th anniversary of that historic event. This was the first video uploaded from the ground to OPALS after launch.

"It took 12 hours to uplink the video using existing infrastructure, and OPALS downlinked it in just seven seconds," Abrahamson said.

The OPALS team downlinked engineering data, between 200 and 300 megabytes in size. Using standard methods, it would take about three hours to send this data; but with OPALS it took only 20 seconds. The data were reconstructed completely without encoding, highlighting the optical link's low bit-error rate -- the rate of errors relative to the total number of bits.

International collaboration has also been important to the mission. OPALS attempted a handful of passes with the German Aerospace Center's ground station in Oberpfaffenhofen, Germany, and with the European Space Agency's ground station in Tenerife, Spain. These passes had varying levels of success.

"We're finding that differing weather patterns and geometry variations are proving to be challenging. We've had a half dozen or so pass attempts with varying levels of success, and we are looking to continuing these collaborations in the future," Abrahamson said.

"OPALS is going to change the way we communicate with and build spacecraft in the future," Abrahamson said.

The OPALS project office is based at JPL. The California Institute of Technology manages JPL for NASA.

News Media Contact

Elizabeth Landau

Headquarters, Washington

202-358-0845

elandau@nasa.gov

2014-421

Related News

Earth .

NASA Measures Underground Water Flowing From Sierra to Central Valley

Earth .

NASA Scientists and Satellites Make Sense of Earth’s Subtle Motions

Climate Change .

NASA Space Missions Pinpoint Sources of CO2 Emissions on Earth

Earth .

Watch the Latest Water Satellite Unfold Itself in Space

Technology .

Moon Water Imager Integrated With NASA’s Lunar Trailblazer

Earth .

NASA Awards Launch Services Contract for Sentinel-6B Mission

Earth .

NASA Launches International Mission to Survey Earth’s Water

Climate Change .

NASA Sensors to Help Detect Methane Emitted by Landfills

Earth .

Latest International Water Satellite Packs an Engineering Punch

Earth .

Water-Tracking SWOT Satellite Encapsulated in Rocket Payload Fairing

Explore More

Image .

London, England Parks

Mission .

Surface Water and Ocean Topography

Image .

Potosi, Bolivia

Image .

California Atmospheric River Storms Captured by NASA's AIRS

Image .

Eriskay Island, Scotland

Image .

Airborne NASA Radar Maps Mauna Loa Lava Changes in Hawaii

Image .

Satellite Data Shows Ground Motion From Mauna Loa Volcano Eruption

Mission .

Lunar Flashlight

Image .

Takawangha Volcano, Alaska

Image .

NASA's AIRS Instrument Tracks Volcanic Sulfur Dioxide Plume from Mauna Loa Eruption

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018