JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Earth
.

New 3D Mapping Technique Improves Landslide Hazard Prediction

Written by Esprit Smith June 3, 2020
This image shows the Slumgullion Landslide in southwestern Colorado. The central area above the highway moves almost an inch per day; the lower part moves much more slowly.
Credit: Bill Schulz/USGS
This map shows where, how quickly and in which direction Colorado's Slumgullion landslide is moving based on remote-sensing data acquired from 2011-2018. Little movement was detected in the areas in yellow. Orange and red areas moved up to 14 millimeters (0.56 inches) per day.
Credit: NASA Earth Observatory
USGS scientists install borehole displacement sensors at the Slumgullion landslide in southwestern Colorado. Data from the sensors were used in the development of a new framework for predicting landslide hazards.
Credit: USGS

Landslides cause loss of life and billions of dollars in damage each year. The ability to predict them accurately can reduce both.

Slow-moving landslides, places where the land creeps sluggishly downhill over long periods of time, are relatively stable - until they aren't. When they become unstable, which can happen for a variety of reasons - including heavy rain, snowmelt, earthquakes and volcanic activity - landslides can quickly turn catastrophic, especially in populated areas.

"It's important to understand how landslides work and how they respond to environmental changes so that we can better predict when they might transition from this gradual motion to a more rapid, catastrophic failure," said NASA Jet Propulsion Laboratory scientist Eric Fielding, coauthor of a new study focused on just that.

Because landslides are often inaccessible and don't respond uniformly to changes, they can be difficult to predict. But the study team, which includes collaborators from the University of California, Berkeley and the U.S. Geological Survey (USGS), has developed a new technique to make prediction both easier and more accurate.

"By combining multiple datasets from the subsurface, ground surface, air and space, we constructed a mechanical framework to quantify different features and movements of the landslide," said lead author Xie Hu of UC Berkeley. "High-resolution synthetic aperture radar data from JPL's airborne UAVSAR instrument was particularly important in developing this framework."

UAVSAR, or Uninhabited Aerial Vehicle Synthetic Aperture Radar, is attached to the bottom of an airplane. When the plane flies over a specific area, the instrument measures the ground level with extreme accuracy. When it flies over that same area again, scientists can glean how much and in which direction the land has moved since the previous flyover. Because it's attached to a plane, rather than a satellite like some similar instruments, scientists can design flight plans to perform multiple passes precisely over the same area in a short amount of time.

The study team centered their research on the 2.5-mile-long (4-kilometer-long) Slumgullion landslide in southwestern Colorado. In motion for well over a century, this landslide provides an ideal natural laboratory for studying the dynamics of slow-moving landslides. They acquired data from multiple UAVSAR flights over Slumgullion each year between 2011 and 2018 and incorporated this data into their new mapping framework.

"By flying over this landslide multiple times, in different directions at perpendicular angles, we had sufficient data to reconstruct the full three-dimensional motion in very clear detail as well as how it varies over the years," said Fielding.

Although UAVSAR doesn't measure deformation at depth directly, the study team integrated the instrument's 3D data into their new mapping process, which enabled them to model the various depths and movements of the slide. Depth is a significant factor in determining when and where a landslide is likely to become unstable.

According to coauthor Bill Schulz of the USGS, most of the action happens at the bottom of the landslide, with everything sliding on a thin shear zone that may be only a few centimeters thick. Because the depth can vary greatly across a single landslide, different parts of the slide will respond to changes in pressure at different times.

"Groundwater pressure - from rain and snowmelt, for example - changes first right at the ground surface and last at the bottom of a landslide," said Schulz. "So if one area of a landslide is half as deep as another, the area that's half as deep will respond first to the change in pressure." The new framework takes this critical depth information into account.

In addition to its bigger-picture implications for improving the forecasting of catastrophic landslide hazards, the study provided insights specific to Slumgullion.

"We found that the central part of this landslide moves quickly - about an inch per day, every day. But in observing all of the data over time, we see that the top and bottom parts are moving, too, just far more slowly," said Fielding. "We also found that the uppermost part of the landslide responds most quickly to spring snowmelt and that the central part responds significantly to annual variation - drought years versus wet years."

Overall, the new framework can be used to improve the accuracy of landslide forecasting and in turn, enable land managers and relevant authorities to better mitigate landslide risks, potentially saving lives.

The study was published Wednesday in Nature Communications.

News Media Contact

Ian J. O’Neill / Jane J. Lee

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-2649 / 818-354-0307

jane.j.lee@jpl.nasa.gov / ian.j.oneill@jpl.nasa.gov

2020-104

Related News

Earth .

NASA Measures Underground Water Flowing From Sierra to Central Valley

Earth .

NASA Scientists and Satellites Make Sense of Earth’s Subtle Motions

Climate Change .

NASA Space Missions Pinpoint Sources of CO2 Emissions on Earth

Earth .

Watch the Latest Water Satellite Unfold Itself in Space

Earth .

NASA Awards Launch Services Contract for Sentinel-6B Mission

Earth .

NASA Launches International Mission to Survey Earth’s Water

Climate Change .

NASA Sensors to Help Detect Methane Emitted by Landfills

Earth .

Latest International Water Satellite Packs an Engineering Punch

Earth .

Water-Tracking SWOT Satellite Encapsulated in Rocket Payload Fairing

Climate Change .

Water Mission to Gauge Alaskan Rivers on Front Lines of Climate Change

Explore More

Image .

London, England Parks

Mission .

Surface Water and Ocean Topography

Image .

Potosi, Bolivia

Image .

California Atmospheric River Storms Captured by NASA's AIRS

Image .

Eriskay Island, Scotland

Image .

Airborne NASA Radar Maps Mauna Loa Lava Changes in Hawaii

Image .

Satellite Data Shows Ground Motion From Mauna Loa Volcano Eruption

Image .

Takawangha Volcano, Alaska

Image .

NASA's AIRS Instrument Tracks Volcanic Sulfur Dioxide Plume from Mauna Loa Eruption

Image .

SWOT Satellite will Improve Clarity and Detail of Sea Height Measurements

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018