JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Robotics
.

NASA’s Trio of Mini Rovers Will Team up to Explore the Moon

Aug. 2, 2023

Your browser cannot play the provided video file(s).

A model rover drives over a rock during a test for NASA’s CADRE project in JPL’s Mars Yard in June. Bound for the Moon, the technology demonstration will show the potential for cooperative, autonomous exploration by a team of three small solar-powered rovers. Credit: NASA/JPL-Caltech Full Image Details

Working together without direct human input, three rovers each the size of a carry-on bag will map the lunar surface in 3D, using cameras and ground-penetrating radar.

NASA is sending a trio of miniature rovers to the Moon to see how well they can cooperate with one another without direct input from mission controllers back on Earth. A teamwork-minded experiment to demonstrate new technology, the CADRE (Cooperative Autonomous Distributed Robotic Exploration) project marks another step the agency is taking toward developing robots that, by operating autonomously, can boost the efficiency of future missions. And, by taking simultaneous measurements from multiple locations, the rovers are meant to show how multirobot missions could potentially enable new science or support astronauts.

Currently slated to arrive aboard a lander in 2024 as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative, CADRE’s three small rovers will be lowered onto the Reiner Gamma region of the Moon via tethers. Each about the size of a carry-on suitcase, the four-wheeled rovers will drive to find a sunbathing spot, where they’ll open their solar panels and charge up. Then they’ll spend about 14 Earth days – the daylight hours of a single lunar day – conducting experiments designed to test their capabilities.

“Our mission is to demonstrate that a network of mobile robots can cooperate to accomplish a task without human intervention – autonomously,” said Subha Comandur, the CADRE project manager at NASA’s Jet Propulsion Laboratory in Southern California. “It could change how we do exploration in the future. The question for future missions will become: ‘How many rovers do we send, and what will they do together?’”

A pair of plastic prototypes of the CADRE rovers demonstrate driving in formation during a test at JPL last year. Seven of these “Mercury 7” prototypes were built, each named for one of NASA’s seven Mercury Project astronauts. John (for John Glenn) and Scott (for Scott Carpenter) are shown here.

Credit: NASA/JPL-Caltech
Full Image Details

Engineer Kristopher Sherrill observes a development model rover during a test for NASA’s CADRE technology demonstration in JPL’s Mars Yard in June. The team tested a new wheel design, surface navigation software, and mobility capabilities, among other aspects of the project.

Credit: NASA/JPL-Caltech
Full Image Details

Mission controllers on Earth will send a broad directive to the rovers’ base station aboard the 13-foot-tall (4-meter-tall) lander. Then the team of little robots will elect a “leader,” which in turn will distribute work assignments to accomplish the collective goal. Each rover will figure out how best to safely complete its assigned task.

“The only instruction is, for example, ‘Go explore this region,’ and the rovers figure out everything else: when they’ll do the driving, what path they’ll take, how they’ll maneuver around local hazards,” said JPL’s Jean-Pierre de la Croix, CADRE’s principal investigator. “You only tell them the high-level goal, and they have to determine how to accomplish it.”

Experiments in Teamwork

A CADRE test rover appears to catch the attention of the much larger engineering model of NASA’s Perseverance rover, called OPTIMISM, at JPL’s Mars Yard. CADRE will demonstrate how multirobot missions can record data impossible for a single robot to achieve – a tantalizing prospect for future missions.

Credit: NASA/JPL-Caltech
Full Image Details

The rovers will face several tests – all within view of a monitoring camera on the base station atop the lander. The first is to drive in formation and stay on course using ultra-wideband radios to maintain their relative positions while relying on sensors to avoid obstacles. In a second experiment, the rovers will each take a path of their own choosing to explore a designated area of about 4,300 square feet (400 square meters), creating a topographic 3D map with stereo cameras. The project will also assess how well the team would adapt if a rover stopped working for some reason. Success will indicate that multirobot missions are a good choice for exploring hazardous but scientifically rewarding terrain.

And while CADRE isn’t focused on conducting science, the rovers will be packing multistatic ground-penetrating radars. Driving in formation, each rover will receive the reflection of radio signals sent by the others, creating a 3D image of the structure of the subsurface as much as 33 feet (10 meters) below. Together they can gather more complete data than can current state-of-the-art ground-penetrating radars like the one on NASA’s Perseverance Mars rover, RIMFAX (Radar Imager for Mars’ Subsurface Experiment).

“We’ll see how multiple robots working together – doing multiple measurements in different places at the same time – can record data that would be impossible for a single robot to achieve,” Comandur said. “It could be a game-changing way of doing science.”

Working Smart

But there’s more to CADRE than testing autonomy and teamwork capabilities: The rovers also need to survive the harsh thermal environment near the Moon’s equator, which poses a challenge for such small robots. In the searing sunlight, the rovers could face midday temperatures of up to 237 degrees Fahrenheit (114 Celsius). Made with a combination of commercial off-the-shelf parts and custom-built components, the rovers must be robust enough to make it through the daytime heat while being compact and lightweight.

At the same time, they need to have the computing power to run the JPL-developed cooperative autonomy software. It’s a difficult balance: The project’s rovers and base station get their brain power from a small processing chip (the next generation of the cellphone-class processor inside NASA’s Ingenuity Mars Helicopter), but using the processor contributes to the heat.

Get the Latest JPL News

SUBSCRIBE TO THE NEWSLETTER

To prevent the rovers from cooking, the CADRE team came up with a creative solution: 30-minute wake-sleep cycles. Every half-hour, the rovers will shut down, cooling off via radiators and recharging their batteries. When they simultaneously awaken, they’ll share their health status with one another via a mesh radio network (much like a home Wi-Fi network) and once again elect a leader based on which is fittest for the task at hand. Then off they’ll go for another round of lunar exploration.

More About the Project

JPL, a division of Caltech in Pasadena, California, manages CADRE for the Game Changing Development program within NASA’s Space Technology Mission Directorate in Washington. The technology demonstration will launch as a payload on the third lunar lander mission by Intuitive Machines, called IM-3, under the CLPS initiative, which is managed by NASA’s Science Mission Directorate, also in Washington. The agency’s Glenn Research Center in Cleveland and its Ames Research Center in Silicon Valley, California, have both supported the project. Motiv Space Systems designed and built key hardware elements at the company’s Pasadena, California, facility. Clemson University in South Carolina contributed research in support of the project.

For further details about CADRE, go to:

https://www.jpl.nasa.gov/missions/cadre

News Media Contact

Melissa Pamer

Jet Propulsion Laboratory, Pasadena, Calif

626-314-4928

melissa.pamer@jpl.nasa.gov

2023-107

Related News

Robotics .

JPL’s Snake-Like EELS Slithers Into New Robotics Terrain

JPL Life .

L.A. Youth Robotics Competition Leaves Student Teams Energized

Robotics .

NASA Is Testing a New Robotic Arm That Really Knows How to Chill Out

Robotics .

JPL’s Venus Aerial Robotic Balloon Prototype Aces Test Flights

Robotics .

Swarm of Tiny Swimming Robots Could Look for Life on Distant Worlds

Robotics .

JPL-Mentored Teams Shine at Annual Student Robotics Competition

Mars .

NASA Begins Testing Robotics to Bring First Samples Back From Mars

Robotics .

A CADRE of Mini-Rovers Navigate the Lunar Terrain of SLOPE

Solar System .

You Can Help Train NASA’s Rovers to Better Explore Mars

Robotics .

NASA Robots Compete in DARPA’s Subterranean Challenge Final

Explore More

Image .

CADRE Rover Testing in JPL's Mars Yard

Image .

CADRE Rover Prototypes Drive in Formation

Image .

Test Rovers Big and Small at JPL

Image .

CADRE Mini Rover Drives Over a Rock

Robot .

EELS (Exobiology Extant Life Surveyor)

Mission .

Cooperative Autonomous Distributed Robotic Exploration

Video .

Testing Out JPL’s New Snake Robot

Event Jan. 19, 2023 .

How Do Missions Get Formed?

Robotics .

Image Gallery: Robotics

Image .

Lemur-3

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
JPL Plan: 2023-2026
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018