JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Mars
.

NASA's Perseverance Rover Bringing 3D-Printed Metal Parts to Mars

Oct 19, 2020
This video clip shows a 3D printing technique where a printer head scans over each layer of a part, blowing metal powder which is melted by a laser. It's one of several ways parts are 3D printed at NASA's Jet Propulsion Laboratory, but was not used to create the parts aboard the Perseverance rover.
Credit: NASA/JPL-Caltech
The outer shell of PIXL, one of the instruments aboard NASA's Perseverance Mars rover, includes several parts that were made of 3D-printed titanium. The inset shows the front half of the two-piece shell part it was finished.
Credit: NASA/JPL-Caltech
This X-ray image shows the inside of a 3D-printed part inside of Perseverance's MOXIE instrument. Martian air will be carried inside the tiny channels in the center of this part, where they'll be pre-heated. X-ray images like these are used to check for defects inside of parts; in this case, engineers checked to make sure the channels were free of 3D printing powder.
Credit: NASA/JPL-Caltech

For hobbyists and makers, 3D printing expands creative possibilities; for specialized engineers, it's also key to next-generation spacecraft design.

If you want to see science fiction at work, visit a modern machine shop, where 3D printers create materials in just about any shape you can imagine. NASA is exploring the technique - known as additive manufacturing when used by specialized engineers - to build rocket engines as well as potential outposts on the Moon and Mars. Nearer in the future is a different milestone: NASA's Perseverance rover, which lands on the Red Planet on Feb. 18, 2021, carries 11 metal parts made with 3D printing.

Instead of forging, molding, or cutting materials, 3D printing relies on lasers to melt powder in successive layers to give shape to something. Doing so allows engineers to play with unique designs and traits, such as making hardware lighter, stronger, or responsive to heat or cold.

Get the Latest JPL News

Subscribe to the Newsletter

"It's like working with papier-mâché," said Andre Pate, the group lead for additive manufacturing at NASA's Jet Propulsion Laboratory in Southern California. "You build each feature layer by layer, and soon you have a detailed part."

Curiosity, Perseverance's predecessor, was the first mission to take 3D printing to the Red Planet. It landed in 2012 with a 3D-printed ceramic part inside the rover's ovenlike Sample Analysis at Mars (SAM) instrument. NASA has since continued to test 3D printing for use in spacecraft to make sure the reliability of the parts is well understood.

As "secondary structures," Perseverance's printed parts wouldn't jeopardize the mission if they didn't work as planned, but as Pate said, "Flying these parts to Mars is a huge milestone that opens the door a little more for additive manufacturing in the space industry."

A Shell for PIXL

Of the 11 printed parts going to Mars, five are in Perseverance's PIXL instrument. Short for the Planetary Instrument for X-ray Lithochemistry, the lunchbox-size device will help the rover seek out signs of fossilized microbial life by shooting X-ray beams at rock surfaces to analyze them.

PIXL shares space with other tools in the 88-pound (40-kilogram) rotating turret at the end of the rover's 7-foot-long (2-meter-long) robotic arm. To make the instrument as light as possible, the JPL team designed PIXL's two-piece titanium shell, a mounting frame, and two support struts that secure the shell to the end of the arm to be hollow and extremely thin. In fact, the parts, which were 3D printed by a vendor called Carpenter Additive, have three or four times less mass than if they'd been produced conventionally.

"In a very real sense, 3D printing made this instrument possible," said Michael Schein, PIXL's lead mechanical engineer at JPL. "These techniques allowed us to achieve a low mass and high-precision pointing that could not be made with conventional fabrication."

MOXIE Turns Up the Heat

Perseverance's six other 3D-printed parts can be found in an instrument called the Mars Oxygen In-Situ Resource Utilization Experiment, or MOXIE. This device will test technology that, in the future, could produce industrial quantities of oxygen to create rocket propellant on Mars, helping astronauts launch back to Earth.

To create oxygen, MOXIE heats Martian air up to nearly 1,500 degrees Fahrenheit (800 degrees Celsius). Within the device are six heat exchangers - palm-size nickel-alloy plates that protect key parts of the instrument from the effects of high temperatures.

While a conventionally machined heat exchanger would need to be made out of two parts and welded together, MOXIE's were each 3D-printed as a single piece at nearby Caltech, which manages JPL for NASA.

"These kinds of nickel parts are called superalloys because they maintain their strength even at very high temperatures," said Samad Firdosy, a material engineer at JPL who helped develop the heat exchangers. "Superalloys are typically found in jet engines or power-generating turbines. They're really good at resisting corrosion, even while really hot."

Although the new manufacturing process offers convenience, each layer of alloy that the printer lays down can form pores or cracks that can weaken the material. To avoid this, the plates were treated in a hot isostatic press - a gas crusher - that heats material to over 1,832 degrees Fahrenheit (1,000 degrees Celsius) and adds intense pressure evenly around the part. Then, engineers used microscopes and lots of mechanical testing to check the microstructure of the exchangers and ensure they were suitable for spaceflight.

"I really love microstructures," Firdosy said. "For me to see that kind of detail as material is printed, and how it evolves to make this functional part that's flying to Mars - that's very cool."

More About the Mission

A key objective of Perseverance's mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet's geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith (broken rock and dust).

Subsequent missions, currently under consideration by NASA in cooperation with ESA (the European Space Agency), would send spacecraft to Mars to collect these cached samples from the surface and return them to Earth for in-depth analysis.

The Mars 2020 mission is part of a larger program that includes missions to the Moon as a way to prepare for human exploration of the Red Planet. Charged with returning astronauts to the Moon by 2024, NASA will establish a sustained human presence on and around the Moon by 2028 through NASA's Artemis lunar exploration plans.

JPL, which is managed for NASA by Caltech in Pasadena, Southern California, built and manages operations of the Perseverance and Curiosity rovers.

For more about Perseverance:

mars.nasa.gov/mars2020/

nasa.gov/perseverance

http://mars.nasa.gov

News Media Contact

Andrew Good

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-2433

andrew.c.good@jpl.nasa.gov

Alana Johnson / Grey Hautaluoma

NASA Headquarters, Washington

202-672-4780 / 202-358-0668

alana.r.johnson@nasa.gov / grey.hautaluoma-1@nasa.gov

2020-198

Related News

Mars .

6 Things to Know About NASA’s Mars Helicopter on Its Way to Mars

Mars .

NASA to Host Virtual Briefing on February Perseverance Mars Rover Landing

Mars .

NASA InSight’s ‘Mole’ Ends Its Journey on Mars

Mars .

Mars 2020 Perseverance Rover to Capture Sounds From the Red Planet

Mars .

NASA’s Curiosity Rover Reaches Its 3,000th Day on Mars

Mars .

NASA Extends Exploration for Two Planetary Science Missions

Mars .

Celebrate the Perseverance Rover Landing With NASA's Student Challenge

Mars .

7 Things to Know About the NASA Rover About to Land on Mars

Mars .

A Martian Roundtrip: NASA's Perseverance Rover Sample Tubes

Mars .

NASA Moves Forward With Campaign to Return Mars Samples to Earth

Explore More

Robot .

RoMan

Image .

Ariadnes Colles

Image .

Gorgonum Chaos

Image .

Sirenum Fossae

Image .

Daedalia Planum

Image .

Terra Cimmeria Crater

Image .

Niger Vallis

Image .

Southern Dunes

Image .

InSight's Mole Comes to Rest

Image .

Daedalia Planum

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono