JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

NASA’s Perseverance Rover Begins Its First Science Campaign on Mars

June 9, 2021
Van Zyl Overlook

NASA’s Perseverance Mars rover used its Mastcam-Z imaging system to capture this 360-degree panorama of “Van Zyl Overlook,” where the rover was parked as the Ingenuity helicopter performed its first flights.

Credit: NASA/JPL-Caltech

The six-wheeled scientist is heading south to explore Jezero Crater’s lakebed in search of signs of ancient microbial life.

On June 1, NASA’s Perseverance Mars rover kicked off the science phase of its mission by leaving the “Octavia E. Butler” landing site. Until recently, the rover has been undergoing systems tests, or commissioning, and supporting the Ingenuity Mars Helicopter’s month of flight tests.

During the first few weeks of this first science campaign, the mission team will drive to a low-lying scenic overlook from which the rover can survey some of the oldest geologic features in Jezero Crater, and they’ll bring online the final capabilities of the rover’s auto-navigation and sampling systems.

NASA’s Perseverance Mars rover used its Mastcam-Z imaging system to capture this 360-degree panorama of “Van Zyl Overlook,” where the rover was parked as the Ingenuity helicopter performed its first flights. The 2.4 billion-pixel panorama is made up of 992 individual images stitched together. The images were taken between April 15 and 26, 2021, or the 53rd and 64th Martian days, or sols, of the mission.

Credit: NASA/JPL-Caltech/ASU/MSSS

By the time Perseverance completed its commissioning phase on June 1, the rover had already tested its oxygen-generating MOXIE instrument and conducted the technology demonstration flights of the Ingenuity helicopter. Its cameras had taken more than 75,000 images, and its microphones had recorded the first audio soundtracks of Mars.

This image looking west toward the Séítah geologic unit on Mars was taken from the height of 33 feet (10 meters) by NASA’s Ingenuity Mars helicopter during its sixth flight, on May 22, 2021.

This image looking west toward the Séítah geologic unit on Mars was taken from the height of 33 feet (10 meters) by NASA’s Ingenuity Mars helicopter during its sixth flight, on May 22, 2021.

Credit: NASA/JPL-Caltech

“We are putting the rover’s commissioning phase as well as the landing site in our rearview mirror and hitting the road,” said Jennifer Trosper, Perseverance project manager at NASA’s Jet Propulsion Laboratory in Southern California. “Over the next several months, Perseverance will be exploring a 1.5-square-mile [4-square-kilometer] patch of crater floor. It is from this location that the first samples from another planet will be collected for return to Earth by a future mission.”

The science goals of the mission are to study the Jezero region in order to understand the geology and past habitability of the environment in the area, and to search for signs of ancient microscopic life. The team will identify and collect the most compelling rock and sediment samples, which a future mission could retrieve and bring back to Earth for more detailed study. Perseverance will also take measurements and test technologies to support future human and robotic exploration of Mars.

Unique Geology

Spanning hundreds of sols (or Martian days), this first science campaign will pursue all of the mission’s science goals as the rover explores two unique geologic units in which Jezero’s deepest (and most ancient) layers of exposed bedrock and other intriguing geologic features can be found. The first unit, called “the Crater Floor Fractured Rough,” is the crater-filled floor of Jezero. The adjacent unit, named “Séítah” (meaning “amidst the sand” in the Navajo language), has its fair share of Mars bedrock but is also home to ridges, layered rocks, and sand dunes.

“To do justice to both units in the time allotted, the team came up with the Martian version of an old auto club-style map,” said JPL’s Kevin Hand, an astrobiologist and co-lead, along with Vivian Sun, of this science campaign. “We have our route planned, complete with optional turnoffs and labeled areas of interest and potential obstructions in our path.”

This annotated image of Jezero Crater depicts the routes for Perseverance’s first science campaign (yellow hash marks) as well its second (light-yellow hash marks).

This annotated image of Jezero Crater depicts the routes for Perseverance’s first science campaign (yellow hash marks) as well as its second (light-yellow hash marks).

Credit: NASA/JPL-Caltech/University of Arizona

Most of the challenges along the way are expected to come in the form of sand dunes located within the mitten-shaped Séítah unit. To negotiate them, the rover team decided Perseverance will drive mostly either on the Crater Floor Fractured Rough or along the boundary line between it and Séítah. When the occasion calls for it, Perseverance will perform a “toe dip” into the Séítah unit, making a beeline for a specific area of interest.

The goal of the campaign is to establish what four locations in these units best tell the story of Jezero Crater’s early environment and geologic history. When the science team decides a location is just right, they will collect one or two samples.

“Starting with the Crater Floor Fractured Rough and Seitah geologic units allows us to start our exploration of Jezero at the very beginning,” said Hand. “This area was under at least 100 meters [328 feet] of water 3.8 billion years ago. We don’t know what stories the rocks and layered outcrops will tell us, but we’re excited to get started.”

The first science campaign will be complete when the rover returns to its landing site. At that point, Perseverance will have traveled between 1.6 and 3.1 miles (2.5 and 5 kilometers) and up to eight of Perseverance’s 43 sample tubes could be filled with Mars rock and regolith (broken rock and dust). Next, Perseverance will travel north then west toward the location of its second science campaign: Jezero’s delta region. The delta is the fan-shaped remains of the confluence of an ancient river and a lake within Jezero Crater. The location may be especially rich in carbonates – minerals that, on Earth, can preserve fossilized signs of ancient life and can be associated with biological processes.

Get the Latest JPL News

SUBSCRIBE TO THE NEWSLETTER

The start of Perseverance’s first science campaign also marks a transition on the team: On June 7, Jennifer Trosper became the mission’s new project manager. She succeeds Matt Wallace, who is moving on to become JPL’s Deputy Director for Planetary Science.

“From Sojourner to Spirit and Opportunity to Curiosity to Perseverance, Matt has played key roles in the design, construction, and operations of every Mars rover NASA has ever built,” said Trosper. “And while the project is losing a great leader and trusted friend, we know Matt will continue making great things happen for the planetary science community.”

More About the Mission

A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith.

Subsequent NASA missions, in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.

The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.

JPL, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.

For more about Perseverance:

mars.nasa.gov/mars2020/

nasa.gov/perseverance

News Media Contact

DC Agle

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-9011

agle@jpl.nasa.gov

Karen Fox / Alana Johnson

NASA Headquarters, Washington

301-286-6284 / 202-358-1501

karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

2021-119

Related News

Mars .

NASA’s Perseverance Collects First Mars Sample of New Science Campaign

Solar System .

NASA’s Magellan Data Reveals Volcanic Activity on Venus

Mars .

Engineers Keep an Eye on Fuel Supply of NASA’s Oldest Mars Orbiter

Solar System .

Study Finds Ocean Currents May Affect Rotation of Europa’s Icy Crust

Mars .

NASA’s Curiosity Views First ‘Sun Rays’ on Mars

Solar System .

Study Finds Venus’ ‘Squishy’ Outer Shell May Be Resurfacing the Planet

Mars .

NASA’s Perseverance Rover Set to Begin Third Year at Jezero Crater

Mars .

NASA’s Perseverance Rover Shows Off Collection of Mars Samples

Solar System .

NASA’s NuSTAR Telescope Reveals Hidden Light Shows on the Sun

Mars .

NASA’s Curiosity Finds Surprise Clues to Mars’ Watery Past

Explore More

Image .

Perseverance Samples 'Berea'

Image .

Perseverance Cores 'Berea'

Image .

Lycus Sulci

Image .

Perseverance's Rock Core From 'Berea' Outcrop

Image .

Mars Samples: Proposed Containment and Transport

Image .

Ceraunius Fossae

Image .

Galaxias Chaos

Image .

Dao and Niger Valles

Image .

Rabe Crater Dunes

Image .

Ophir and Candor Chasmata

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018