JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Earth
.

NASA's New Soil Moisture Mapper Goes for a Spin

Mar 24, 2015
Artist's rendering of NASA's Soil Moisture Active Passive satellite.
Credit: NASA/JPL-Caltech

NASA's new soil moisture mapping mission has moved a step closer to starting science operations following the partial spin-up of its "golden lasso" reflector antenna.

Fast Facts:

› SMAP has undergone the first part of a two-part procedure to spin up its antenna

› After its antenna spins up, SMAP will generate global maps of soil moisture every two to three days

Mission controllers at NASA's Jet Propulsion Laboratory in Pasadena, California, have commanded the 20-foot (6-meter) reflector antenna on NASA's new Soil Moisture Active Passive (SMAP) observatory to begin spinning for the first time. The partial spin-up is a key step in commissioning the satellite in preparation for science operations.

Last week, mission controllers sent commands to release the locking mechanism that prevented the observatory's spun instrument assembly -- the part that spins -- from rotating during launch and deployment of the reflector. The spun instrument assembly includes the spin control electronics, radiometer instrument and reflector antenna.

Yesterday, in the first step of a two-step procedure, the spun instrument assembly was spun up to its initial rate of five revolutions per minute (rpm), a process that took about a minute. Initial data indicate the partial antenna spin-up procedure went as planned.

Because of the large size (mass) of the spun instrument assembly and its relatively rapid angular acceleration during spin-up, SMAP's spacecraft bus rotated in the opposite direction during this process to balance the angular momentum. It reached a peak rate of up to 11 degrees per second. Once the spun instrument assembly spin rate stabilized at five rpm, the spacecraft's reaction wheels quickly restored the spacecraft bus to a non-rotating, stable attitude. Onboard flight software then turned the observatory back to its science-gathering orientation, with the spin axis pointing straight down to the ground and SMAP's solar array pointed toward the sun.

The observatory will remain in its current configuration with the spun instrument assembly rotating at five rpm for about three days to allow ground controllers to assess the observatory's performance at this spin rate before proceeding to the next step. On March 26, after ground analysis of this first antenna spin-up step is completed, mission controllers plan to increase the antenna's spin speed to its final rate of approximately 15 rpm.

The partial antenna spin-up follows a series of recent propulsive maneuvers by SMAP's ground flight operations team to adjust the observatory to its final science orbit for mapping operations.

SMAP launched Jan. 31 on a minimum three-year mission to map global soil moisture and detect whether soils are frozen or thawed. The mission will help scientists understand the links in Earth's water, energy and carbon cycles; help reduce uncertainties in predicting weather and climate; and enhance our ability to monitor and predict natural hazards such as floods and droughts

When fully spun up and collecting science data, SMAP's antenna will measure a 620-mile-wide (1,000-kilometer) swath of the ground as it flies above Earth at an altitude of 426 miles (685 kilometers). This will allow SMAP to map the entire globe with high-resolution radar data every two to three days.

For more information on SMAP, visit:

http://www.nasa.gov/smap

For more information about NASA's Earth science programs, visit:

http://www.nasa.gov/earthrightnow

News Media Contact

Alan Buis

818-354-0474

alan.buis@jpl.nasa.gov

2015-098

Related News

Weather .

A Pioneering NASA Mini Weather Satellite Ends Its Mission

Climate Change .

NASA Satellites Help Quantify Forests’ Impacts on the Global Carbon Budget

Mars .

NASA’s Perseverance Pays Off Back Home

Climate Change .

Warming Seas Are Accelerating Greenland’s Glacier Retreat

Earth .

NASA, US and European Partner Satellite Returns First Sea Level Measurements

Technology .

NASA Confirms New SIMPLEx Mission Small Satellite to Blaze Trails Studying Lunar Surface

Earth .

New Data Confirm 2020 SO to Be the Upper Centaur Rocket Booster From the 1960's

Earth .

Follow Sentinel-6 Michael Freilich in Real Time As It Orbits Earth

Climate Change .

US-European Mission Launches to Monitor the World's Oceans

Climate Change .

Sentinel-6 Michael Freilich Satellite Prepared for Launch

Explore More

Image .

Mt. Etna--February 26, 2021

Image .

Mt. Etna February 2021

Image .

Tumbiana Stromatolite

Image .

Banjul, The Gambia

Image .

Lake Salda Rocks

Image .

Lake Salda Beach

Image .

Serabit el-Khadim, Egypt

Image .

Glacier Undercutting in Action

Image .

Hulhumale, Maldives

Topic .

Earth

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Visions of the Future
Slice of History
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Universe Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono