JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Mars
.

NASA’s Ingenuity Mars Helicopter Flies Faster, Farther on Third Flight

April 25, 2021
NASA's Ingenuity Mars Helicopter can be seen hovering during its third flight on April 25, 2021, as seen by the left Navigation Camera aboard NASA's Perseverance Mars rover.
NASA's Ingenuity Mars Helicopter can be seen hovering during its third flight on April 25, 2021, as seen by the left Navigation Camera aboard NASA's Perseverance Mars rover.
Credit: NASA/JPL-Caltech
Full Image Details
This black and white image was taken by NASA's Ingenuity helicopter during its third flight on April 25, 2021.
This black and white image was taken by NASA's Ingenuity helicopter during its third flight on April 25, 2021.
Credit: NASA/JPL-Caltech
Full Image Details
This is the second color image taken by NASA's Ingenuity helicopter. It was snapped on the helicopter's second flight on April 22, 2021 from an altitude of about 17 feet (5.2 meters). Tracks made by NASA's Perseverance Mars rover can be seen as well.
This is the second color image taken by NASA's Ingenuity helicopter. It was snapped on the helicopter's second flight on April 22, 2021 from an altitude of about 17 feet (5.2 meters). Tracks made by NASA's Perseverance Mars rover can be seen as well.
Credit: NASA/JPL-Caltech
Full Image Details
This is the third color image taken by NASA's Ingenuity helicopter. It was snapped on the helicopter's second flight, April 22, 2021, from an altitude of about 17 feet (5.2 meters). Tracks made by NASA's Perseverance Mars rover can be seen as well.
This is the third color image taken by NASA's Ingenuity helicopter. It was snapped on the helicopter's second flight, April 22, 2021, from an altitude of about 17 feet (5.2 meters). Tracks made by NASA's Perseverance Mars rover can be seen as well.
Credit: NASA/JPL-Caltech
Full Image Details

The craft’s April 25 flight was conducted at speeds and distances beyond what had ever been previously demonstrated, even in testing on Earth.

NASA’s Ingenuity Mars Helicopter continues to set records, flying faster and farther on Sunday, April 25, 2021 than in any tests it went through on Earth. The helicopter took off at 4:31 a.m. EDT (1:31 a.m. PDT) , or 12:33 p.m. local Mars time, rising 16 feet (5 meters) – the same altitude as its second flight. Then it zipped downrange 164 feet (50 meters), just over half the length of a football field, reaching a top speed of 6.6 feet per second (2 meters per second).

After data came back from Mars starting at 10:16 a.m. EDT (7:16 a.m. PDT), Ingenuity’s team at NASA’s Jet Propulsion Laboratory in Southern California was ecstatic to see the helicopter soaring out of view. They’re already digging through a trove of information gathered during this third flight that will inform not just additional Ingenuity flights but possible Mars rotorcraft in the future.

NASA’s Ingenuity Mars Helicopter takes off and lands in this video captured on April 25, 2021, by Mastcam-Z, an imager aboard NASA’s Perseverance Mars rover. As expected, the helicopter flew out of its field of vision while completing a flight plan that took it 164 feet (50 meters) downrange of the landing spot. Keep watching, the helicopter will return to stick the landing.

Credit: NASA/JPL-Caltech/ASU/MSSS

“Today’s flight was what we planned for, and yet it was nothing short of amazing,” said Dave Lavery, the project’s program executive for Ingenuity Mars Helicopter at NASA Headquarters in Washington. “With this flight, we are demonstrating critical capabilities that will enable the addition of an aerial dimension to future Mars missions.”

The Mastcam-Z imager aboard NASA’s Perseverance Mars rover, which is parked at “Van Zyl Overlook” and serving as a communications base station, captured video of Ingenuity. In the days ahead, segments of that video will be sent back to Earth showing most of the helicopter’s 80-second journey across its flight zone.

The Ingenuity team has been pushing the helicopter’s limits by adding instructions to capture more photos of its own – including from the color camera, which captured its first images on Flight Two. As with everything else about these flights, the additional steps are meant to provide insights that could be used by future aerial missions.

Ingenuity’s third flight achieved a longer flight time and more sideways movement than previously attempted. During the 80-second flight, the helicopter climbed to 16 feet (5 meters) and flew 164 feet (50 meters) downrange and back, for a total distance of 328 feet (100 meters). The third flight test took place at “Wright Brothers Field” in Jezero Crater, Mars, on April 25, 2021.

Credit: NASA/JPL-Caltech

The helicopter’s black-and-white navigation camera, meanwhile, tracks surface features below, and this flight put the onboard processing of these images to the test. Ingenuity’s flight computer, which autonomously flies the craft based on instructions sent up hours before data is received back on Earth, utilizes the same resources as the cameras. Over greater distances, more images are taken. If Ingenuity flies too fast, the flight algorithm can’t track surface features.

“This is the first time we’ve seen the algorithm for the camera running over a long distance,” said MiMi Aung, the helicopter’s project manager at JPL. “You can’t do this inside a test chamber.”

Vacuum chambers at JPL are filled with wispy air, primarily carbon dioxide, to simulate the thin Martian atmosphere; they don’t have room for even a tiny helicopter to move more than about 1.6 feet (half a meter) in any direction. That posed a challenge: Would the camera track the ground as designed while moving at higher speed on the Red Planet?

Get the Latest JPL News

SUBSCRIBE TO THE NEWSLETTER

Lots of things have to go just right for the camera to do that, said Gerik Kubiak, a JPL software engineer. Aside from focusing on the algorithm that tracks surface features, the team needs the correct image exposures: Dust can obscure the images and interfere with camera performance. And the software must perform consistently.

“When you’re in the test chamber, you have an emergency land button right there and all these safety features,” Kubiak said. “We have done all we can to prepare Ingenuity to fly free without these features.”

With this third flight in the history books, the Ingenuity Mars Helicopter team is looking ahead to planning its fourth flight in a few days’ time.

The Ingenuity Mars Helicopter was built by JPL, which also manages this technology demonstration project for NASA Headquarters. It is supported by NASA’s Science Mission Directorate, Aeronautics Research Mission Directorate, and Space Technology Mission Directorate. NASA’s Ames Research Center and Langley Research Center provided significant flight performance analysis and technical assistance during Ingenuity’s development. AeroVironment Inc., Qualcomm, Snapdragon, and SolAero also provided design assistance and major vehicle components. The Mars Helicopter Delivery System was designed and manufactured by Lockheed Space Systems, Denver.

News Media Contact

Andrew Good

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-2433

andrew.c.good@jpl.nasa.gov

Karen Fox / Alana Johnson

NASA Headquarters, Washington

301-286-6284 / 202-358-1501

karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

2021-090

Related News

Solar System .

NASA’s Juno Team Assessing Camera After 48th Flyby of Jupiter

Solar System .

NASA’s Psyche Mission Continues Preparation for Launch in 2023

Solar System .

NASA’s Lunar Flashlight Team Assessing Spacecraft’s Propulsion System

Mars .

NASA Explores a Winter Wonderland on Mars

Solar System .

Juno Spacecraft Recovering Memory After 47th Flyby of Jupiter

Mars .

NASA Retires InSight Mars Lander Mission After Years of Science

Mars .

NASA’s Perseverance Rover Deposits First Sample on Mars Surface

Solar System .

40-Year Study Finds Mysterious Patterns in Temperatures at Jupiter

Mars .

NASA’s Perseverance Rover to Begin Building Martian Sample Depot

Solar System .

NASA’s Juno Exploring Jovian Moons During Extended Mission

Explore More

Image .

Windstreak

Image .

Sirenum Fossae

Image .

NASA's Psyche: Picking up Launch Prep for 2023

Image .

Claritas Fossae

Image .

Perseverance's Three Forks Sample Depot Selfie

Event Feb. 16, 2023 .

Perseverance: Two Years on Mars

Event Feb. 16, 2023 .

Perseverance: Two Years on Mars

Image .

Gale Crater

Mission .

Ranger 1

Image .

South Polar Layers

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018