JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo

NASA Space Telescopes See Magnified Image of Faintest Galaxy from Early Universe

Dec 03, 2015
This is a Hubble Space Telescope view of a very massive cluster of galaxies, MACS J0416.1-2403, located roughly 4 billion light-years away and weighing as much as a million billion suns.› Full image and caption
Credit: NASA, ESA, and Pontificia Universidad Católica de Chile

Astronomers harnessing the combined power of NASA's Hubble and Spitzer space telescopes have found the faintest object ever seen in the early universe.

Astronomers harnessing the combined power of NASA's Hubble and Spitzer space telescopes have found the faintest object ever seen in the early universe. It existed about 400 million years after the big bang, 13.8 billion years ago.

The team has nicknamed the object Tayna, which means "first-born" in Aymara, a language spoken in the Andes and Altiplano regions of South America.

Though Hubble and Spitzer have detected other galaxies that are record-breakers for distance, this object represents a smaller, fainter class of newly forming galaxies that until now had largely evaded detection. These very dim objects may be more representative of the early universe, and offer new insight on the formation and evolution of the first galaxies.

"Thanks to this detection, the team has been able to study for the first time the properties of extremely faint objects formed not long after the big bang," said lead author Leopoldo Infante, an astronomer at the Pontifical Catholic University of Chile. The remote object is part of a discovery of 22 young galaxies at ancient times located nearly at the observable horizon of the universe. This research means there is a substantial increase in the number of known very distant galaxies.

The results are published in the December 3 issue of The Astrophysical Journal.

The new object is comparable in size to the Large Magellanic Cloud, a diminutive satellite galaxy of our Milky Way. It is rapidly making stars at a rate 10 times faster than the Large Magellanic Cloud. The object might be the growing core of what will likely evolve into a full-sized galaxy.

The small and faint galaxy was only seen thanks to a natural "magnifying glass" in space. As part of its Frontier Fields program, Hubble observed a massive cluster of galaxies, MACS0416.1-2403, located roughly 4 billion light-years away and weighing as much as a million billion suns. This giant cluster acts as a powerful natural lens by bending and magnifying the light of far more distant objects behind it. Like a zoom lens on a camera, the cluster¹s gravity boosts the light of the distant proto-galaxy to make it look 20 times brighter than normal. The phenomenon is called gravitational lensing and was proposed by Albert Einstein as part of his General Theory of Relativity.

The galaxy's distance was estimated by building a color profile from combined Hubble and Spitzer observations. The expansion of the universe causes the light from distant galaxies to be stretched or reddened with increasing distance. Though many of the galaxy's new stars are intrinsically blue-white, their light has been shifted into infrared wavelengths that are measurable by Hubble and Spitzer. Absorption by intervening cool intergalactic hydrogen also makes the galaxies look redder.

This finding suggests that the very early universe will be rich in galaxy targets for the upcoming James Webb Space Telescope to uncover. Astronomers expect that Webb will allow us to see the embryonic stages of galaxy birth shortly after the big bang.

For more information, visit

http://www.nasa.gov/hubble

http://www.nasa.gov/spitzer

News Media Contact

Whitney Clavin

626-395-1856

wclavin@caltech.edu

Ray Villard

410-338-4514

villard@stsci.edu

2015-359

Latest News

Climate Change .

NASA-Built Instrument Will Help to Spot Greenhouse Gas Super-Emitters

Stars and Galaxies .

Telescopes Unite in Unprecedented Observations of Famous Black Hole

Earth .

NASA Satellites Detect Signs of Volcanic Unrest Years Before Eruptions

Mars .

NASA’s Mars Helicopter to Make First Flight Attempt

Technology .

NASA Selects Innovative, Early-Stage Tech Concepts for Continued Study

Mars .

Say Cheese on Mars: Perseverance’s Selfie With Ingenuity

Stars and Galaxies .

Trio of Fast-Spinning Brown Dwarfs May Reveal a Rotational Speed Limit

Mars .

NASA’s Odyssey Orbiter Marks 20 Historic Years of Mapping Mars

Solar System .

Probing for Life in the Icy Crusts of Ocean Worlds

Technology .

POINTER: Seeing Through Walls to Help Locate Firefighters

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Visions of the Future
Slice of History
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Universe Newsletter
Social Media
RSS
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono