JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

NASA Selects Scientists for Mars Rover Research Projects

Mar 11, 2016
Patches of Martian sandstone visible in the lower-left and upper portions of this March 9, 2016, view from the Mast Camera of NASA's Curiosity Mars rover have a knobbly texture due to nodules apparently more resistant to erosion than the host rock in which some are still embedded.› Full image and caption
Credit: NASA/JPL-Caltech/MSSS
This view shows nodules exposed in sandstone that is part of the Stimson geological unit on Mount Sharp, Mars. The nodules can be seen to consist of grains of sand cemented together. Curiosity's Mars Hand Lens Imager (MAHLI) took this image on March 10, 2016.› Full image and caption
Credit: NASA/JPL-Caltech/MSSS
The nodule in the center of this image from the Mars Hand Lens Imager (MAHLI) on NASA's Curiosity Mars rover shows individual grains of sand and (on the left) laminations from the sandstone deposit in which the nodule formed.› Full image and caption
Credit: NASA/JPL-Caltech/MSSS
This map shows the route driven by NASA's Curiosity Mars rover from where it landed in 2012 to its location in early March 2016, approaching "Naukluft Plateau." As the rover continues up Mount Sharp, its science team has been refreshed by a second round of NASA participating-scientist selections.› Full image and caption
Credit: NASA/JPL-Caltech/Univ. of Arizona

NASA has selected 28 researchers as participating scientists for the Curiosity Mars rover mission, including six newcomers to the rover's science team.

NASA has selected 28 researchers as participating scientists for the Curiosity Mars rover mission, including six newcomers to the rover's science team.

The six new additions work in Alabama, Colorado, Indiana, Pennsylvania, Michigan and Tennessee. Eighty-nine scientists around the world submitted research proposals for using data from Curiosity and becoming participating scientists on the Mars Science Laboratory Project, which built and operates the rover. The 28 selected by NASA are part of a science team that also includes about 120 other members, mainly the principal investigators and co-investigators for the rover's 10 science instruments, plus about 320 science-team collaborators, such as the investigators' associates and students.

An initial group of Mars Science Laboratory participating scientists was chosen before Curiosity's 2012 landing on Mars, and several of those scientists were selected again in the latest round. Participating scientists on the mission play active roles in the day-to-day science operations of Curiosity, involving heavy interaction with rover engineers at NASA's Jet Propulsion Laboratory, Pasadena, California. JPL manages the mission for NASA.

The six participating scientists who are new to the mission are: Barbara Cohen, of NASA Marshall Space Flight Center, Huntsville, Alabama; Christopher Fedo of the University of Tennessee, Knoxville; Raina Gough of the University of Colorado, Boulder; Briony Horgan of Purdue University, West Lafayette, Indiana; Christopher House of Pennsylvania State University, University Park; and Mark Salvatore of the University of Michigan, Dearborn.

Seven other newly selected participating scientists have participated in the Curiosity mission previously in other roles: Christopher Edwards, U.S. Geological Survey, Flagstaff, Arizona; Abigail Fraeman, JPL; Scott Guzewich, Universities Space Research Association, Greenbelt, Maryland; Craig Hardgrove, Arizona State University, Tempe; Amy McAdam, NASA Goddard Space Flight Center, Greenbelt, Maryland; Melissa Rice, Western Washington University, Bellingham; and Kathryn Stack Morgan, JPL.

Fifteen researchers who had been selected previously as Mars Science Laboratory participating scientists were selected again in this round: Raymond Arvidson, Washington University, St. Louis, Missouri; John Bridges, University of Leicester, United Kingdom; Bethany Ehlmann, California Institute of Technology, Pasadena; Jennifer Eigenbrode, NASA Goddard; Kenneth Farley, Caltech; John Grant, Smithsonian Institution, Washington; Jeffrey Johnson, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland; Richard Léveillé, McGill University, Montreal, Quebec, Canada; Kevin Lewis, Johns Hopkins University; Scott McLennan, State University of New York, Stony Brook; Ralph Milliken, Brown University, Providence, Rhode Island; John Moores, York University, Toronto, Ontario, Canada; David Rubin, University of California, Santa Cruz; Mariek Schmidt, Brock University, St. Catherines, Ontario, Canada; Rebecca Williams, Planetary Science Institute, Madison, Wisconsin.

During Curiosity's prime mission, which was completed in 2014, the project met its main goal by finding evidence that ancient Mars offered environmental conditions with all the requirements for supporting microbial life, if any ever existed on Mars. In Curiosity's first extended mission, researchers are using the rover on the lower portion of a layered mountain to study how Mars' ancient environment changed from wet conditions favorable for microbial life to harsher, drier conditions. For more information about Curiosity, visit:

http://mars.jpl.nasa.gov/msl

News Media Contact

Guy Webster

818-354-6278

guy.webster@jpl.nasa.gov

2016-068

Related News

Solar System .

NASA’s Deep Space Network Welcomes a New Dish to the Family

Mars .

6 Things to Know About NASA’s Mars Helicopter on Its Way to Mars

Mars .

NASA to Host Virtual Briefing on February Perseverance Mars Rover Landing

Mars .

NASA InSight’s ‘Mole’ Ends Its Journey on Mars

Mars .

Mars 2020 Perseverance Rover to Capture Sounds From the Red Planet

Solar System .

NASA’s Juno Mission Expands Into the Future

Mars .

NASA’s Curiosity Rover Reaches Its 3,000th Day on Mars

Mars .

NASA Extends Exploration for Two Planetary Science Missions

Mars .

Celebrate the Perseverance Rover Landing With NASA's Student Challenge

Mars .

7 Things to Know About the NASA Rover About to Land on Mars

Explore More

Image .

Juno's Mission Goes On

Topic .

Solar System

Image .

A Hot Spot on Jupiter

Image .

Jupiter's Storm Oval BA As Viewed By An Artist

Image .

Two Views of Jupiter Hot Spot

Image .

A Jupiter Circumpolar Cyclone

Image .

Jupiter North Pole Detail

Video .

What's Up - January 2021

Image .

All Eight Northern Circumpolar Cyclones in 2020

Image .

Tracking Clouds on Jupiter

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono