JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

NASA Rover Finds Old Streambed on Martian Surface

Sep 27, 2012
NASA's Curiosity rover found evidence for an ancient, flowing stream on Mars at a few sites, including the rock outcrop pictured here, which the science team has named "Hottah" after Hottah Lake in Canada's Northwest Territories.› Full image and caption
Credit: NASA/JPL-Caltech/MSSS
This map shows the path on Mars of NASA's Curiosity rover toward Glenelg, an area where three terrains of scientific interest converge.› Full image and caption
Credit: NASA/JPL-Caltech/Univ. of Arizona
This image shows the topography, with shading added, around the area where NASA's Curiosity rover landed on Aug. 5 PDT (Aug. 6 EDT).› Full image and caption
Credit: NASA/JPL-Caltech/UofA
This false-color map shows the area within Gale Crater on Mars, where NASA's Curiosity rover landed on Aug. 5, 2012 PDT (Aug. 6, 2012 EDT).› Full image and caption
Credit: NASA/JPL-Caltech/ASU
This image from NASA's Curiosity Rover shows a high-resolution view of an area that is known as Goulburn Scour, a set of rocks blasted by the engines of Curiosity's descent stage on Mars.› Full image and caption
Credit: NASA/JPL-Caltech/MSSS
In this image from NASA's Curiosity rover, a rock outcrop called Link pops out from a Martian surface that is elsewhere blanketed by reddish-brown dust.› Full image and caption
Credit: NASA/JPL-Caltech/MSSS

Scientists are studying the images of stones cemented into a layer of conglomerate rock.

PASADENA, Calif. -- NASA's Curiosity rover mission has found evidence a stream once ran vigorously across the area on Mars where the rover is driving. There is earlier evidence for the presence of water on Mars, but this evidence -- images of rocks containing ancient streambed gravels -- is the first of its kind.

Scientists are studying the images of stones cemented into a layer of conglomerate rock. The sizes and shapes of stones offer clues to the speed and distance of a long-ago stream's flow.

"From the size of gravels it carried, we can interpret the water was moving about 3 feet per second, with a depth somewhere between ankle and hip deep," said Curiosity science co-investigator William Dietrich of the University of California, Berkeley. "Plenty of papers have been written about channels on Mars with many different hypotheses about the flows in them. This is the first time we're actually seeing water-transported gravel on Mars. This is a transition from speculation about the size of streambed material to direct observation of it."

The finding site lies between the north rim of Gale Crater and the base of Mount Sharp, a mountain inside the crater. Earlier imaging of the region from Mars orbit allows for additional interpretation of the gravel-bearing conglomerate. The imagery shows an alluvial fan of material washed down from the rim, streaked by many apparent channels, sitting uphill of the new finds.

The rounded shape of some stones in the conglomerate indicates long-distance transport from above the rim, where a channel named Peace Vallis feeds into the alluvial fan. The abundance of channels in the fan between the rim and conglomerate suggests flows continued or repeated over a long time, not just once or for a few years.

The discovery comes from examining two outcrops, called "Hottah" and "Link," with the telephoto capability of Curiosity's mast camera during the first 40 days after landing. Those observations followed up on earlier hints from another outcrop, which was exposed by thruster exhaust as Curiosity, the Mars Science Laboratory Project's rover, touched down.

"Hottah looks like someone jack-hammered up a slab of city sidewalk, but it's really a tilted block of an ancient streambed," said Mars Science Laboratory Project Scientist John Grotzinger of the California Institute of Technology in Pasadena.

The gravels in conglomerates at both outcrops range in size from a grain of sand to a golf ball. Some are angular, but many are rounded.

"The shapes tell you they were transported and the sizes tell you they couldn't be transported by wind. They were transported by water flow," said Curiosity science co-investigator Rebecca Williams of the Planetary Science Institute in Tucson, Ariz.

The science team may use Curiosity to learn the elemental composition of the material, which holds the conglomerate together, revealing more characteristics of the wet environment that formed these deposits. The stones in the conglomerate provide a sampling from above the crater rim, so the team may also examine several of them to learn about broader regional geology.

The slope of Mount Sharp in Gale Crater remains the rover's main destination. Clay and sulfate minerals detected there from orbit can be good preservers of carbon-based organic chemicals that are potential ingredients for life.

"A long-flowing stream can be a habitable environment," said Grotzinger. "It is not our top choice as an environment for preservation of organics, though. We're still going to Mount Sharp, but this is insurance that we have already found our first potentially habitable environment."

During the two-year prime mission of the Mars Science Laboratory, researchers will use Curiosity's 10 instruments to investigate whether areas in Gale Crater have ever offered environmental conditions favorable for microbial life.

NASA's Jet Propulsion Laboratory, a division of Caltech, built Curiosity and manages the Mars Science Laboratory Project for NASA's Science Mission Directorate, Washington.

For more about Curiosity, visit: http://www.jpl.nasa.gov/msl , http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl .

You can follow the mission on Facebook and Twitter at: http://www.facebook.com/marscuriosity  and http://www.twitter.com/marscuriosity .

News Media Contact

Guy Webster / DC Agle

818-354-6278 / 818-393-9011

guy.webster@jpl.nasa.gov / agle@jpl.nasa.gov

Dwayne Brown

202-358-1726

dwayne.c.brown@nasa.gov

2012-305

Related News

Mars .

NASA’s Perseverance Mars Rover Extracts First Oxygen From Red Planet

Mars .

NASA’s Ingenuity Mars Helicopter Succeeds in Historic First Flight

Mars .

NASA to Attempt First Controlled Flight on Mars As Soon As Monday

Mars .

NASA’s Mars Helicopter to Make First Flight Attempt

Mars .

NASA’s Odyssey Orbiter Marks 20 Historic Years of Mapping Mars

Solar System .

Probing for Life in the Icy Crusts of Ocean Worlds

Mars .

NASA’s First Weather Report From Jezero Crater on Mars

Mars .

NASA Invites Public to Take Flight With Ingenuity Mars Helicopter

Mars .

NASA’s Mars Helicopter Survives First Cold Martian Night on Its Own

Mars .

Sensors Collect Crucial Data on Mars Landings With Arrival of Perseverance

Explore More

Image .

Goldstone Radar Observations of Asteroid 2001 FO32

Video .

What's Up - April 2021

Image .

Europa Clipper Spacecraft (Illustration)

Image .

Europa Imaging System Wide Angle Camera

Image .

Faraday Cups Up Close: NASA's Europa Clipper

Image .

Europa Clipper's Thermal Tubing

Image .

Europa Imaging System Narrow Angle Camera

Image .

Europa Clipper REASON Testing on the Mesa

Image .

Europa Clipper's Europa Imaging System in the Works

Image .

Preparing NASA's Europa Clipper's Plasma Instrument

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Visions of the Future
Slice of History
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Universe Newsletter
Social Media
RSS
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono