JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

NASA Probe Observes Meteors Colliding with Saturn's Rings

Apr 25, 2013
Five images of Saturn's rings, taken by NASA's Cassini spacecraft between 2009 and 2012, show clouds of material ejected from impacts of small objects into the rings.› Full image and caption
Credit: NASA/JPL-Caltech/Space Science Institute/Cornell
This animation depicts the shearing of an initially circular cloud of debris as a result of the particles in the cloud having differing orbital speeds around Saturn.› Full image and caption
Credit: NASA/Cornell
This photograph of the meteor streaking through the sky above Chelyabinsk, Russia, on Feb. 15, 2013, was taken by a local, M. Ahmetvaleev. The small asteroid was about 56 to 66 feet (17 to 20 meters) wide.› Full image and caption
Credit: Copyright M. Ahmetvaleev

NASA's Cassini spacecraft has provided the first direct evidence of small meteoroids breaking into streams of rubble and crashing into Saturn's rings.

PASADENA, Calif. -- NASA's Cassini spacecraft has provided the first direct evidence of small meteoroids breaking into streams of rubble and crashing into Saturn's rings.

These observations make Saturn's rings the only location besides Earth, the moon and Jupiter where scientists and amateur astronomers have been able to observe impacts as they occur. Studying the impact rate of meteoroids from outside the Saturnian system helps scientists understand how different planet systems in our solar system formed. The meteoroids detected by Cassini were comparable in size to the meteor that hurtled over Chelyabinsk, Russia, this past February.

The solar system is full of small, speeding objects. These objects frequently pummel planetary bodies. The meteoroids at Saturn are estimated to range from about one-half inch to several yards (1 centimeter to several meters) in size. It took scientists years to distinguish tracks left by nine meteoroids in 2005, 2009 and 2012.

Details of the observations appear in a paper in the Thursday, April 25 edition of Science.

Results from Cassini have already shown Saturn's rings act as very effective detectors of many kinds of surrounding phenomena, including the interior structure of the planet and the orbits of its moons. For example, a subtle but extensive corrugation that ripples 12,000 miles (19,000 kilometers) across the innermost rings tells of a very large meteoroid impact in 1983.

"These new results imply the current-day impact rates for small particles at Saturn are about the same as those at Earth -- two very different neighborhoods in our solar system -- and this is exciting to see," said Linda Spilker, Cassini project scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "It took Saturn's rings acting like a giant meteoroid detector -- 100 times the surface area of the Earth -- and Cassini's long-term tour of the Saturn system to address this question."

The Saturnian equinox in summer 2009 was an especially good time to see the debris left by meteoroid impacts. The very shallow sun angle on the rings caused the clouds of debris to look bright against the darkened rings in pictures from Cassini's imaging science subsystem.

"We knew these little impacts were constantly occurring, but we didn't know how big or how frequent they might be, and we didn't necessarily expect them to take the form of spectacular shearing clouds," said Matt Tiscareno, lead author of the paper and a Cassini participating scientist at Cornell University in Ithaca, N.Y. "The sunlight shining edge-on to the rings at the Saturnian equinox acted like an anti-cloaking device, so these usually invisible features became plain to see."

Tiscareno and his colleagues now think meteoroids of this size probably break up on a first encounter with the rings, creating smaller, slower pieces that then enter into orbit around Saturn. The impact into the rings of these secondary meteoroid bits kicks up the clouds. The tiny particles forming these clouds have a range of orbital speeds around Saturn. The clouds they form soon are pulled into diagonal, extended bright streaks.

"Saturn's rings are unusually bright and clean, leading some to suggest that the rings are actually much younger than Saturn," said Jeff Cuzzi, a co-author of the paper and a Cassini interdisciplinary scientist specializing in planetary rings and dust at NASA's Ames Research Center in Moffett Field, Calif. "To assess this dramatic claim, we must know more about the rate at which outside material is bombarding the rings. This latest analysis helps fill in that story with detection of impactors of a size that we weren't previously able to detect directly."

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of the California Institute of Technology, Pasadena, manages the Cassini-Huygens mission for NASA's Science Mission Directorate in Washington. JPL designed, developed and assembled the Cassini orbiter and its two onboard cameras. The imaging team consists of scientists from the United States, England, France and Germany. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

For images of the impacts and information about Cassini, visit: http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov .

News Media Contact

Jia-Rui Cook

818-354-0724

jccook@jpl.nasa.gov

Dwayne Brown

202-358-1726

dwayne.c.brown@nasa.gov

2013-147

Related News

Mars .

NASA to Host Virtual Briefing on February Perseverance Mars Rover Landing

Mars .

NASA InSight’s ‘Mole’ Ends Its Journey on Mars

Mars .

Mars 2020 Perseverance Rover to Capture Sounds From the Red Planet

Solar System .

NASA’s Juno Mission Expands Into the Future

Mars .

NASA’s Curiosity Rover Reaches Its 3,000th Day on Mars

Mars .

NASA Extends Exploration for Two Planetary Science Missions

Mars .

Celebrate the Perseverance Rover Landing With NASA's Student Challenge

Mars .

7 Things to Know About the NASA Rover About to Land on Mars

Mars .

A Martian Roundtrip: NASA's Perseverance Rover Sample Tubes

Mars .

NASA Moves Forward With Campaign to Return Mars Samples to Earth

Explore More

Image .

Juno's Mission Goes On

Topic .

Solar System

Image .

A Hot Spot on Jupiter

Image .

Jupiter's Storm Oval BA As Viewed By An Artist

Image .

Two Views of Jupiter Hot Spot

Image .

A Jupiter Circumpolar Cyclone

Image .

Jupiter North Pole Detail

Video .

What's Up - January 2021

Image .

All Eight Northern Circumpolar Cyclones in 2020

Image .

Tracking Clouds on Jupiter

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono