JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

NASA Mars Lander Prepares to Move Arm

May 27, 2008
The butterfly-like object in this picture is NASA's Phoenix Mars Lander, as seen from above by NASA's Mars Reconnaissance Orbiter.> Full image and caption
Credit: NASA/JPL-Calech/University of Arizona
This is a view from Mars Reconnaissance Orbiter of the Phoenix parachute and lander during its May 25 descent, with Heimdall crater in the background.Full image and caption
Credit: NASA/JPL-Calech/University of Arizona

NASA's Phoenix Lander is ready to begin moving its robotic arm, first unlatching its wrist and then flexing its elbow.

NASA's Phoenix Lander is ready to begin moving its robotic arm, first unlatching its wrist and then flexing its elbow.

Mission scientists are eager to move Phoenix's robotic arm, for that arm will deliver samples of icy terrain to their instruments made to study this unexplored Martian environment.

The team sent commands for moving the arm on Tuesday morning, May 27, to NASA's Mars Reconnaissance Orbiter for relay to Phoenix. However, the orbiter did not relay those commands to the lander, so arm movement and other activities are now planned for Wednesday. The orbiter's communication-relay system is in a standby mode. NASA's Mars Odyssey orbiter is available for relaying communications between Earth and Phoenix.

NASA's Mars Reconnaissance Orbiter did send back spectacular first images of the landed Phoenix from orbit, views from the Phoenix lander of where it will work for the next three months, and a preliminary weather report.

A newly processed image from the high-resolution camera known as HiRISE on NASA's Mars Reconnaissance Orbiter shows a full-resolution view of the Phoenix parachute and lander during its May 25 descent, with Heimdall crater in the background.

"Phoenix appears to be descending into the 10 kilometer, or 6-mile, crater, but is actually 20 kilometers, or about 12 miles, in front of the crater," said HiRISE principal investigator Alfred S. McEwen of the University of Arizona, Tucson.

HiRISE has taken a new color image of Phoenix on the ground about 22 hours after it landed. It shows the parachute attached to the back shell, the heat shield and the lander itself against red Mars. The parachute and lander are about 300 meters, roughly 1,000 feet, apart.

Commands to be sent to the lander Wednesday morning include taking more pictures of the surroundings and making the first movements of the mission's crucial robotic arm.

A covering that had shielded the arm from microbes during its last few months before launch had not fully retracted on landing day, May 25, but it moved farther from the arm during the following day.

"The biobarrier had relaxed more and allows more clearance, but it was not a major concern either way," said Fuk Li, manager of the Mars Exploration Program at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

During the next three months, the arm will dig into soil near the lander and deliver samples of soil and ice to laboratory instruments on the lander deck. Following today's commands, its movements will begin with unlatching the wrist, then moving the arm upwards in a stair-step manner.

Phoenix principal investigator Peter Smith of the University of Arizona was delighted with new images of the workspace. "The workspace is ideal for us because it looks very diggable. We're very happy to see just a few rocks scattered in the digging area."

The Phoenix weather station, provided by the Canadian Space Agency, was activated within the first hour after landing on Mars, and measurements are now being recorded continuously. The data from the first 18 hours after landing have been transmitted back to the science team, and they have provided a weather report. The temperature ranged between a minimum of minus 80 degrees Celsius (minus 112 degrees Fahrenheit) in the early morning and a maximum of minus 30 degrees Celsius (minus 22 degrees Fahrenheit) in the afternoon. The average pressure was 8.55 millibars, which is less than a hundredth of the sea level pressure on Earth. The wind speed was 20 kilometers per hour (13 miles per hour), out of the northeast. The skies were clear. More instruments will be activated over the coming days, and the weather report will expand to include measurements of humidity and visibility.

Smith presented a new Surface Stereo Imager view of the American flag and a mini-DVD on the Phoenix's deck, about three feet above the Martian surface. The mini-DVD from the Planetary Society contains a message to future Martian explorers, science fiction stories and art inspired by the Red Planet, and the names of more than a quarter million Earthlings.

The Phoenix mission is led by Smith at the University of Arizona with project management at JPL and development partnership at Lockheed Martin. International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute. More Phoenix information is at http://www.nasa.gov/phoenix .
> JPL Phoenix site
> NASA Phoenix site
> Univ. of Arizona site

News Media Contact

Guy Webster

818-354-6278

guy.webster@jpl.nasa.gov

Dwayne Brown

202-358-1726

dwayne.c.brown@nasa.gov

Sara Hammond

520-626-1974

shammond@lpl.arizona.edu

2008-084

Related News

Mars .

NASA’s Ingenuity Mars Helicopter Succeeds in Historic First Flight

Mars .

NASA to Attempt First Controlled Flight on Mars As Soon As Monday

Mars .

NASA’s Mars Helicopter to Make First Flight Attempt

Mars .

NASA’s Odyssey Orbiter Marks 20 Historic Years of Mapping Mars

Solar System .

Probing for Life in the Icy Crusts of Ocean Worlds

Mars .

NASA’s First Weather Report From Jezero Crater on Mars

Mars .

NASA Invites Public to Take Flight With Ingenuity Mars Helicopter

Mars .

NASA’s Mars Helicopter Survives First Cold Martian Night on Its Own

Mars .

Sensors Collect Crucial Data on Mars Landings With Arrival of Perseverance

Mars .

NASA’s InSight Detects Two Sizable Quakes on Mars

Explore More

Image .

Goldstone Radar Observations of Asteroid 2001 FO32

Video .

What's Up - April 2021

Image .

Europa Clipper Spacecraft (Illustration)

Image .

Europa Imaging System Wide Angle Camera

Image .

Faraday Cups Up Close: NASA's Europa Clipper

Image .

Europa Clipper's Thermal Tubing

Image .

Europa Imaging System Narrow Angle Camera

Image .

Europa Clipper REASON Testing on the Mesa

Image .

Europa Clipper's Europa Imaging System in the Works

Image .

Preparing NASA's Europa Clipper's Plasma Instrument

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Visions of the Future
Slice of History
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Universe Newsletter
Social Media
RSS
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono