JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Mars
.

NASA Mars Ascent Vehicle Continues Progress Toward Mars Sample Return

July 31, 2023
A development motor based on the second-stage solid rocket motor design for NASA’s Mars Ascent Vehicle (MAV) undergoes testing March 29, at Northrop Grumman’s facility in Elkton, Maryland.

A development motor based on the second-stage solid rocket motor design for NASA’s Mars Ascent Vehicle (MAV) undergoes testing March 29, at Northrop Grumman’s facility in Elkton, Maryland. An important part of the NASA-ESA Mars Sample Return campaign, the MAV would be the first rocket fired off another planet.

Credit: NASA

The first rocket launch from the surface of another planet will be accomplished using two solid rocket motors.

NASA’s Mars Ascent Vehicle (MAV) recently reached some major milestones in support of the Mars Sample Return program. The Mars Ascent Vehicle would be the first launch of a rocket from the surface of another planet. The team developing MAV conducted successful tests of the first and second stage solid rocket motors needed for the launch.

Mars Sample Return will bring scientifically selected samples to Earth for study using the most sophisticated instrumentation around the world. This strategic partnership with ESA (European Space Agency) features the first mission to return samples from another planet. The samples currently being collected by NASA’s Perseverance Rover during its exploration of an ancient river delta have the potential to reveal the early evolution of Mars, including the potential for ancient life.

NASA’s Mars Ascent Vehicle (MAV) team recently conducted successful motor tests that will launch the first rocket from the surface of Mars. The MAV launch will be accomplished using two solid rocket motors – SRM1 and SRM2.

Credit: NASA

Managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, MAV is currently set to launch in June 2028, with the samples set to arrive on Earth in the early 2030s. The Mars Sample Return Program is managed by NASA’s Jet Propulsion Laboratory in Southern California.

For the MAV to be successful, the team performs extensive testing, analysis, and review of MAV’s design and components. The vehicle will travel aboard the Sample Retrieval Lander during launch from Earth, a two-year journey to Mars, and nearly a year of receiving samples collected by Perseverance.

After the Sample Transfer Arm on the lander loads the samples from Perseverance into a sample container in the nose of the rocket, the MAV will launch from Mars into orbit around the planet, releasing the sample container for the Earth Return Orbiter to capture.

The MAV launch will be accomplished using two solid rocket motors – SRM1 and SRM2. SRM1 will propel MAV away from the Red Planet’s surface, while SRM2 will spin MAV’s second stage to place the sample container in the correct Mars orbit, allowing the Earth Return Orbiter to find it.

To test the solid rocket motor designs, the MAV team prepared development motors. This allowed the team to see how the motors will perform and if any adjustments should be made before they are built for the mission. The SRM2 development motor was tested on March 29, 2023, at the Northrop Grumman facility in Elkton, Maryland. Then, SRM1’s development motor was tested on April 7 at Edwards Air Force Base in California.

SRM1’s test was conducted in a vacuum chamber that was cooled to minus 20 degrees Celsius (minus 4 degrees Fahrenheit) and allowed the team to also test a supersonic splitline nozzle, part of SRM1’s thrust vector control system. Most gimballing solid rocket motor nozzles are designed in a way that can’t handle the extreme cold MAV will experience, so the Northrop Grumman team had to come up with something that could: a state-of-the-art trapped ball nozzle featuring a supersonic split line.

After testing and disassembling the SRM1 development motor, analysis showed the team’s ingenuity proved successful.

“This test demonstrates our nation has the capacity to develop a launch vehicle that can successfully be lightweight enough to get to Mars and robust enough to put a set of samples into orbit to bring back to Earth,” said MAV Propulsion Manager Benjamin Davis at NASA’s Marshall Space Flight Center. “The hardware is telling us that our technology is ready to proceed with development.”

In fact, the supersonic splitline nozzle has achieved the sixth of nine technology readiness levels – known as TRL-6 – developed by NASA. TRL-1 is the starting point at which there is just an idea for a new technology, while TRL-9 means the technology has been developed, tested, and successfully used for an in-space mission.

Davis said the supersonic splitline nozzle achieved TRL-6 through vacuum bench testing and full-scale hot fire testing in April. Results are being independently evaluated and will be confirmed in August.

The supersonic splitline nozzle will also undergo qualification testing to make sure it can handle the intense shaking and vibration of launch, the near vacuum of space, and the extreme heat and cold expected during MAV’s trip.

Get the Latest JPL News

SUBSCRIBE TO THE NEWSLETTER

In addition to motor testing, the MAV team recently conducted its preliminary design review, which was a four-day, in-depth review of MAV’s overall design. Mars Ascent Vehicle Project Manager Stephen Gaddis said MAV passed that review, which means the team can now focus on continuing to improve MAV before its critical design review next summer.

NASA Marshall is designing, building, and testing MAV along with the project’s two primary contractors, Lockheed Martin Space and Northrop Grumman. Lockheed Martin Space is the overall system integrator and provides multiple subsystems, and Northrop Grumman provides the first stage and second stage main propulsion systems. The Mars Sample Return Program is managed by JPL in Southern California.

Learn more about the Mars Sample Return campaign.

More About Mars Sample Return

NASA’s planned Mars Sample Return (MSR) campaign would fulfill one of the highest priority solar system exploration goals identified by the National Academies of Sciences, Engineering and Medicine in the past three decadal surveys. This strategic partnership with ESA (European Space Agency) features the first mission to return samples from another planet, including the first launch from the surface of another planet. The samples being collected by NASA’s Perseverance rover during its exploration of an ancient river delta are thought to be the best opportunity to reveal the early evolution of Mars, including the potential for ancient life.

News Media Contact

Jonathan Deal

Marshall Space Flight Center, Huntsville, Ala.

256-631-9126

jonathan.e.deal@nasa.gov

DC Agle

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-9011

agle@jpl.nasa.gov

Dewayne Washington

NASA Headquarters, Washington

301-832-5867

dewayne.a.washington@nasa.gov

Written by Jessica Barnett

2023-105

Related News

Mars .

NASA’s Perseverance Captures Dust-Filled Martian Whirlwind

Mars .

Historic Wind Tunnel Facility Testing NASA’s Mars Ascent Vehicle Rocket

Mars .

Autonomous Systems Help NASA’s Perseverance Do More Science on Mars

Mars .

NASA Releases Independent Review’s Mars Sample Return Report

Solar System .

Venus on Earth: NASA’s VERITAS Science Team Studies Volcanic Iceland

Mars .

NASA’s Curiosity Reaches Mars Ridge Where Water Left Debris Pileup

Technology .

NASA to Discuss Optical Communications Demo Riding With Psyche

Solar System .

NASA’s Psyche Mission on Track for Liftoff Next Month

Mars .

NASA’s Oxygen-Generating Experiment MOXIE Completes Mars Mission

Solar System .

NASA to Discuss Psyche Asteroid Mission, Optical Communications Demo

Explore More

QUIZZES .

Space Trivia

Image .

Martian Whirlwind Takes the 'Thorofare'

Image .

Martian Whirlwind Takes the 'Thorofare'

Image .

Perseverance AutoNav Avoids a Boulder

Image .

Perseverance's AutoNav Leads the Way

Image .

Perseverance's AutoNav Leads the Way

Image .

Perseverance Makes Tracks in Boulder Field

Image .

Perseverance Makes Tracks in Boulder Field

Image .

Curiosity Views Gediz Vallis Ridge

Image .

Curiosity's Path to Gediz Vallis Ridge and Beyond

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
JPL Plan: 2023-2026
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018