JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Mars
.

NASA InSight Lander 'Hears' Martian Winds

Dec 07, 2018
One of InSight's 7-foot (2.2 meter) wide solar panels was imaged by the lander's Instrument Deployment Camera, which is fixed to the elbow of its robotic arm.
Credit: NASA/JPL-Caltech

Vibrations picked up by two spacecraft instruments have provided the first sounds of Martian wind.

NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport InSight lander, which touched down on Mars just 10 days ago, has provided the first ever "sounds" of Martian winds on the Red Planet. A media teleconference about these sounds will be held today at 12:30 p.m. EST (9:30 a.m. PST).

InSight sensors captured a haunting low rumble caused by vibrations from the wind, estimated to be blowing between 10 to 15 mph (5 to 7 meters a second) on Dec. 1, from northwest to southeast. The winds were consistent with the direction of dust devil streaks in the landing area, which were observed from orbit.

"Capturing this audio was an unplanned treat," said Bruce Banerdt, InSight principal investigator at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. "But one of the things our mission is dedicated to is measuring motion on Mars, and naturally that includes motion caused by sound waves."

Teleconference audio and accompanying visuals will stream live on NASA's website. A follow-along page is available at:

https://www.nasa.gov/insightmarswind

Two very sensitive sensors on the spacecraft detected these wind vibrations: an air pressure sensor inside the lander and a seismometer sitting on the lander's deck, awaiting deployment by InSight's robotic arm. The two instruments recorded the wind noise in different ways. The air pressure sensor, part of the Auxiliary Payload Sensor Subsystem (APSS), which will collect meteorological data, recorded these air vibrations directly. The seismometer recorded lander vibrations caused by the wind moving over the spacecraft's solar panels, which are each 7 feet (2.2 meters) in diameter and stick out from the sides of the lander like a giant pair of ears.

This is the only phase of the mission during which the seismometer, called the Seismic Experiment for Interior Structure SEIS, will be capable of detecting vibrations generated directly by the lander. In a few weeks, it will be placed on the Martian surface by InSight's robotic arm, then covered by a domed shield to protect it from wind and temperature changes. It still will detect the lander's movement, though channeled through the Martian surface. For now, it's recording vibrational data that scientists later will be able to use to cancel out noise from the lander when SEIS is on the surface, allowing them to detect better actual marsquakes.

When earthquakes occur on Earth, their vibrations, which bounce around inside our planet, make it "ring" similar to how a bell creates sound. InSight will see if tremors, or marsquakes, have a similar effect on Mars. SEIS will detect these vibrations that will tell us about the Red Planet's deep interior. Scientists hope this will lead to new information on the formation of the planets in our solar system, perhaps even of our own planet.

SEIS, provided by France's Centre National d'Études Spatiales (CNES), includes two sets of seismometers. Those contributed by the French will be used once SEIS is deployed from the deck of the lander. But SEIS also includes short period (SP) silicon sensors developed by Imperial College London with electronics from Oxford University in the United Kingdom. These sensors can work while on the deck of the lander and are capable of detecting vibrations up to frequencies of nearly 50 hertz, at the lower range of human hearing.

"The InSight lander acts like a giant ear," said Tom Pike, InSight science team member and sensor designer at Imperial College London. "The solar panels on the lander's sides respond to pressure fluctuations of the wind. It's like InSight is cupping its ears and hearing the Mars wind beating on it. When we looked at the direction of the lander vibrations coming from the solar panels, it matches the expected wind direction at our landing site."

Pike compared the effect to a flag in the wind. As a flag breaks up the wind, it creates oscillations in air pressure that the human ear perceives as flapping. Separately, APSS records changes in pressure directly from the thin Martian air.

"That's literally what sound is - changes in air pressure," said Don Banfield InSight's science lead for APSS from Cornell University in Ithaca, New York. "You hear that whenever you speak to someone across the room."

Unlike the vibrations recorded by the short period sensors, audio from APSS is about 10 hertz, below the range of human hearing.

The raw audio sample from the seismometer was released unaltered; a second version was raised two octaves to be more perceptible to the human ear - especially when heard through laptop or mobile speakers. The second audio sample from APSS was sped up by a factor of 100, which shifted it up in frequency.

An even clearer sound from Mars is yet to come. In just a couple years, NASA's Mars 2020 rover is scheduled to land with two microphones on board. The first, provided by JPL, is included specifically to record, for the first time, the sound of a Mars landing. The second is part of the SuperCam and will be able to detect the sound of the instrument's laser as it zaps different materials. This will help identify these materials based on the change in sound frequency.

JPL manages InSight for NASA's Science Mission Directorate in Washington. InSight is part of NASA's Discovery Program, which is managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supports spacecraft operations for the mission.

A number of European partners, including CNES and the German Aerospace Center, support the InSight mission. CNES and the Institut de Physique du Globe de Paris provided SEIS, with significant contributions from the Max Planck Institute for Solar System Research in Germany, the Swiss Institute of Technology in Switzerland, Imperial College and Oxford University in the United Kingdom, and JPL. DLR provided the Heat Flow and Physical Properties Package HP3 instrument, with significant contributions from the Space Research Center of the Polish Academy of Sciences and Astronika in Poland. Spain's Centro de Astrobiología supplied the wind sensors.

Los Alamos National Laboratory in New Mexico and Institut de Recherche en Astrophysique et Planétologie in France are responsible for delivering the SuperCam instrument to NASA. The SuperCam microphone is provided by Institut Supérieur de l'Aéronautique et de l'Espace, a French higher education institution.

For more information about InSight, visit:

https://www.nasa.gov/insight

Teleconference audio and visuals will stream live at:

https://www.nasa.gov/live

https://youtube.com/NASAJPL/live

News Media Contact

Dwayne Brown / JoAnna Wendel

202-358-1726 / 202-358-1003

dwayne.c.brown@nasa.gov / joanna.r.wendel@nasa.gov

Andrew Good

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-2433

andrew.c.good@jpl.nasa.gov

2018-282

Related News

Mars .

NASA’s Perseverance Drives on Mars’ Terrain for First Time

Mars .

NASA Awards Mars Ascent Propulsion System Contract for Sample Return

Mars .

NASA to Provide Update on Perseverance ‘Firsts’ Since Mars Landing

Mars .

Testing Proves Its Worth With Successful Mars Parachute Deployment

Mars .

NASA’s Perseverance Rover Gives High-Definition Panoramic View of Landing Site

Mars .

NASA to Reveal New Video, Images From Mars Perseverance Rover

Mars .

NASA's Mars Perseverance Rover Provides Front-Row Seat to Landing, First Audio Recording of Red Planet

Mars .

NASA’s Perseverance Rover Sends Sneak Peek of Mars Landing

Mars .

NASA’s Mars Helicopter Reports In

Mars .

Touchdown! NASA’s Mars Perseverance Rover Safely Lands on Red Planet

Explore More

Image .

Flexing Perseverance's Robotic Arm

Image .

The Road Ahead for Perseverance

Image .

Simulation of Perseverance Arm Movement

Image .

Perseverance Wiggles a Wheel

Image .

Perseverance Hazcam First Drive

Image .

Perseverance Is Roving on Mars

Image .

Hebes Chasma - False Color

Image .

Perseverance Drive Visualization

Image .

Perseverance's Weather Sensors Deployed

Image .

Perseverance View of the Delta in Jezero Crater

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Visions of the Future
Slice of History
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Universe Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono