JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Earth
.

NASA Flights Detect Millions of Arctic Methane Hotspots

Written by Esprit Smith Feb 13, 2020
The image shows a thermokarst lake in Alaska. Thermokarst lakes form in the Arctic when permafrost thaws.
Credit: NASA/JPL-Caltech

Knowing where emissions are happening and what's causing them brings us a step closer to being able to forecast the region's impact on global climate.

The Arctic is one of the fastest warming places on the planet. As temperatures rise, the perpetually frozen layer of soil, called permafrost, begins to thaw, releasing methane and other greenhouse gases into the atmosphere. These methane emissions can accelerate future warming - but to understand to what extent, we need to know how much methane may be emitted, when and what environmental factors may influence its release.

That's a tricky feat. The Arctic spans thousands of miles, many of them inaccessible to humans. This inaccessibility has limited most ground-based observations to places with existing infrastructure - a mere fraction of the vast and varied Arctic terrain. Moreover, satellite observations are not detailed enough for scientists to identify key patterns and smaller-scale environmental influences on methane concentrations.

In a new study, scientists with NASA's Arctic Boreal Vulnerability Experiment (ABoVE), found a way to bridge that gap. In 2017, they used planes equipped with the Airborne Visible Infrared Imaging Spectrometer - Next Generation (AVIRIS - NG), a highly specialized instrument, to fly over some 11,583 square miles (30,000 square kilometers) of the Arctic landscape in the hope of detecting methane hotspots. The instrument did not disappoint.

"We consider hotspots to be areas showing an excess of 3,000 parts per million of methane between the airborne sensor and the ground," said lead author Clayton Elder of NASA's Jet Propulsion Laboratory in Pasadena, California. "And we detected 2 million of these hotspots over the land that we covered."

The paper, titled "Airborne Mapping Reveals Emergent Power Law of Arctic Methane Emissions," was published Feb. 10 in Geophysical Research Letters.

Within the dataset, the team also discovered a pattern: On average, the methane hotspots were mostly concentrated within about 44 yards (40 meters) of standing bodies of water, like lakes and streams. After the 44-yard mark, the presence of hotspots gradually became sparser, and at about 330 yards (300 meters) from the water source, they dropped off almost completely.

The scientists working on this study don't have a complete answer as to why 44 yards is the "magic number" for the whole survey region yet, but additional studies they've conducted on the ground provide some insight.

"After two years of ground field studies that began in 2018 at an Alaskan lake site with a methane hotspot, we found abrupt thawing of the permafrost right underneath the hotspot," said Elder. "It's that additional contribution of permafrost carbon - carbon that's been frozen for thousands of years - that's essentially contributing food for the microbes to chew up and turn into methane as the permafrost continues to thaw."

Scientists are just scratching the surface of what is possible with the new data, but their first observations are valuable. Being able to identify the likely causes of the distribution of methane hotspots, for example, will help them to more accurately calculate this greenhouse gas's emissions across areas where we don't have observations. This new knowledge will improve how Arctic land models represent methane dynamics and therefore our ability to forecast the region's impact on global climate and global climate change impacts on the Arctic.

Elder says the study is also a technological breakthrough.

"AVIRIS-NG has been used in previous methane surveys, but those surveys focused on human-caused emissions in populated areas and areas with major infrastructure known to produce emissions," he said. "Our study marks the first time the instrument has been used to find hotspots where the locations of possible permafrost-related emissions are far less understood."

More information on ABoVE can be found here:

https://above.nasa.gov/

News Media Contact

Jane J. Lee

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-0307

jane.j.lee@jpl.nasa.gov

2020-032

Related News

Weather .

A Pioneering NASA Mini Weather Satellite Ends Its Mission

Climate Change .

NASA Satellites Help Quantify Forests’ Impacts on the Global Carbon Budget

Mars .

NASA’s Perseverance Pays Off Back Home

Climate Change .

Warming Seas Are Accelerating Greenland’s Glacier Retreat

Earth .

NASA, US and European Partner Satellite Returns First Sea Level Measurements

Technology .

NASA Confirms New SIMPLEx Mission Small Satellite to Blaze Trails Studying Lunar Surface

Earth .

New Data Confirm 2020 SO to Be the Upper Centaur Rocket Booster From the 1960's

Earth .

Follow Sentinel-6 Michael Freilich in Real Time As It Orbits Earth

Climate Change .

US-European Mission Launches to Monitor the World's Oceans

Climate Change .

Sentinel-6 Michael Freilich Satellite Prepared for Launch

Explore More

Image .

Mt. Etna--February 26, 2021

Image .

Mt. Etna February 2021

Image .

Tumbiana Stromatolite

Image .

Banjul, The Gambia

Image .

Lake Salda Rocks

Image .

Lake Salda Beach

Image .

Serabit el-Khadim, Egypt

Image .

Glacier Undercutting in Action

Image .

Hulhumale, Maldives

Topic .

Earth

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Visions of the Future
Slice of History
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Universe Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono