JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Earth
.

NASA Data Find Some Hope for Water in Aral Sea Basin

Feb. 14, 2014
A relic of the vanishing Aral Sea.
Credit: Wikimedia Commons
Unlined irrigation ditches in the Aral Sea watershed are inefficient, but they allow some water to seep back into aquifers.
Credit: Wikimedia Commons

A new study using NASA satellite data finds that water prospects for the Aral Sea watershed are better than previously thought.

A new study using data from NASA satellite missions finds that, although the long-term water picture for the Aral Sea watershed in Central Asia remains bleak, short-term prospects are better than previously thought.

Once the fourth largest inland sea in the world, the Aral Sea has lost 90 percent of its water volume over the last 50 years. Its watershed -- the enormous closed basin around the sea -- encompasses Uzbekistan and parts of Tajikistan, Turkmenistan, Kyrgyzstan and Kazakhstan.

Graduate student Kirk Zmijewski and assistant professor Richard Becker of the University of Toledo, Ohio, wanted to find out whether all of the water was gone for good, or whether some of it might have ended up elsewhere in the watershed, behind dams or in aquifers. They also wanted to gauge whether decreasing rainfall has contributed to the catastrophic water loss.

The researchers used data from NASA's Gravity Recovery and Climate Experiment (GRACE) satellites to map monthly changes in mass within the watershed from 2003 to 2012. These changes are associated with changes in water volume, both on and below the land surface. They mapped the entire Aral Sea watershed, which is more than twice the size of Texas at 580,000 square miles (1.5 million square kilometers).

Zmijewski and Becker found that each year throughout the decade, the watershed lost an average of 2.9 to 3.4 cubic miles (12 to 14 cubic kilometers) of water, or the equivalent of one Lake Mead per year. That's a sobering rate of loss, but it's only about half as much as the rate at which the Aral Sea itself is losing water (5.8 cubic miles or 24 cubic kilometers).

"That means that roughly half the water lost from the Aral Sea has entirely left the watershed, by evaporation or agricultural uses, but half is upstream within the watershed," said Becker.

Specifically, more water is now in the central part of the watershed, where almost all of the region's farming takes place. That area increased in mass during the last four years of the study. The researchers believe that some of the increase comes from improvements in water conservation practices, though some was simply the result of inefficient irrigation, for example, water seeping out of unlined ditches into aquifers.

Decreasing rainfall in the region has been widely reported, and the researchers wanted to quantify its role in the water loss. They were unable to find a complete and reliable published rainfall record for the entire watershed using ground-based measurements, so they analyzed rainfall data from NASA's Tropical Rainfall Measuring Mission satellite. Unexpectedly, they found no change in precipitation since 2002. "That was more surprising to us than anything else," said Becker. To check that result, they extended their analysis back to 1980, using data from the Global Precipitation Climatology Project for the earlier years. There was no sign of dwindling precipitation for the watershed across the entire 30-year period.

Patterns of rainfall have shifted near the Aral Sea, Becker pointed out, and that may have misled observers into believing that rain was decreasing overall. "Lake-effect precipitation downwind of the Aral Sea has decreased, but precipitation over the sea itself has increased, so that's not changing the whole system," he said.

The basin's water woes began in the 1930s with a Soviet development plan to create a cotton industry in the Central Asian desert. Rivers flowing into the Aral Sea were diverted to nourish the thirsty crop, setting off the inland sea's decline. Since the breakup of the Soviet Union, several watershed countries have maintained a cotton-based economy.

Declining availability of freshwater due to human activities and climate change is a critical issue throughout the world, affecting agriculture, economics and politics. Becker said, "When water is removed from the watershed, agricultural prospects in the region decline. It's hopeful that investments in irrigation upgrades have decreased water losses. With savvy water policy, each country in the watershed could continue to improve in the future."

The research was published January 31 in the journal Earth Interactions.

For a slideshow of the shrinking Aral Sea during the 21st century, visit: http://earthobservatory.nasa.gov/Features/WorldOfChange/aral_sea.php.

For more about GRACE, visit: http://www.csr.utexas.edu/grace/.

NASA monitors Earth's vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earth's interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.

For more information about NASA's Earth science activities in 2014, visit: http://www.nasa.gov/earthrightnow.

News Media Contact

Written by Carol Rasmussen

Alan Buis

818-354-0474

alan.buis@jpl.nasa.gov

2014-050

Related News

Earth .

NASA Measures Underground Water Flowing From Sierra to Central Valley

Earth .

NASA Scientists and Satellites Make Sense of Earth’s Subtle Motions

Climate Change .

NASA Space Missions Pinpoint Sources of CO2 Emissions on Earth

Earth .

Watch the Latest Water Satellite Unfold Itself in Space

Earth .

NASA Awards Launch Services Contract for Sentinel-6B Mission

Earth .

NASA Launches International Mission to Survey Earth’s Water

Climate Change .

NASA Sensors to Help Detect Methane Emitted by Landfills

Earth .

Latest International Water Satellite Packs an Engineering Punch

Earth .

Water-Tracking SWOT Satellite Encapsulated in Rocket Payload Fairing

Climate Change .

Water Mission to Gauge Alaskan Rivers on Front Lines of Climate Change

Explore More

Image .

London, England Parks

Mission .

Surface Water and Ocean Topography

Image .

Potosi, Bolivia

Image .

California Atmospheric River Storms Captured by NASA's AIRS

Image .

Eriskay Island, Scotland

Image .

Airborne NASA Radar Maps Mauna Loa Lava Changes in Hawaii

Image .

Satellite Data Shows Ground Motion From Mauna Loa Volcano Eruption

Image .

Takawangha Volcano, Alaska

Image .

NASA's AIRS Instrument Tracks Volcanic Sulfur Dioxide Plume from Mauna Loa Eruption

Image .

SWOT Satellite will Improve Clarity and Detail of Sea Height Measurements

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018