JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

NASA Cassini Data Reveals Building Block for Life in Enceladus’ Ocean

June 14, 2023
The icy crust at the south pole of Enceladus exhibits large fissures that allow water from the subsurface ocean to spray into space as geysers, forming a plume of icy particles. NASA’s Cassini spacecraft, which captured this imagery in 2009

The icy crust at the south pole of Enceladus exhibits large fissures that allow water from the subsurface ocean to spray into space as geysers, forming a plume of icy particles. NASA’s Cassini spacecraft, which captured this imagery in 2009, sampled those particles to reveal the chemicals contained in the ocean. Credit: NASA/JPL-Caltech/Space Science Institute Full Image Details

As it swooped past the south pole of Saturn's moon Enceladus on July 14, 2005, NASA's Cassini spacecraft acquired high resolution views of this puzzling ice world.

During a 2005 flyby, NASA’s Cassini spacecraft took high-resolution images of Enceladus that were combined into this mosaic, which shows the long fissures at the moon’s south pole that allow water from the subsurface ocean to escape into space.

Credit: NASA/JPL/Space Science Institute
Full Image Details

Lee esta nota de prensa en español aquí.

Phosphorus, a key chemical element for many biological processes, has been found in icy grains emitted by the small moon and is likely abundant in its subsurface ocean.

Using data collected by NASA’s Cassini mission, an international team of scientists has discovered phosphorus – an essential chemical element for life – locked inside salt-rich ice grains ejected into space from Enceladus.

The small moon is known to possess a subsurface ocean, and water from that ocean erupts through cracks in Enceladus’ icy crust as geysers at its south pole, creating a plume. The plume then feeds Saturn’s E ring (a faint ring outside of the brighter main rings) with icy particles.

During its mission at the gas giant from 2004 to 2017, Cassini flew through the plume and E ring numerous times. Scientists found that Enceladus’ ice grains contain a rich array of minerals and organic compounds – including the ingredients for amino acids – associated with life as we know it.

Wispy fingers of bright, icy material reach tens of thousands of kilometers outward from Saturn's moon Enceladus into the E ring, while the moon's active south polar jets continue to fire away. Image captured by NASA's Cassini spacecraft.

Seen as a bright arc in this 2006 observation by Cassini, Saturn’s E ring is fed with icy particles from Enceladus’ plume, creating wispy fingers of bright material that is backlit by the Sun. The shadowed hemisphere of the moon can be seen as a dark dot inside the ring.

Credit: NASA/JPL/Space Science Institute
Full Image Details

Phosphorus, the least abundant of the essential elements necessary for biological processes, hadn’t been detected until now. The element is a building block for DNA, which forms chromosomes and carries genetic information, and is present in the bones of mammals, cell membranes, and ocean-dwelling plankton. Phosphorus is also a fundamental part of energy-carrying molecules present in all life on Earth. Life wouldn’t be possible without it.

“We previously found that Enceladus’ ocean is rich in a variety of organic compounds,” said Frank Postberg, a planetary scientist at Freie Universität Berlin, Germany, who led the new study, published on Wednesday, June 14, in the journal Nature. “But now, this new result reveals the clear chemical signature of substantial amounts of phosphorus salts inside icy particles ejected into space by the small moon’s plume. It’s the first time this essential element has been discovered in an ocean beyond Earth.”

NASA’s Eyes on the Solar System visualization tool lets you interact with Cassini during some of its key moments flying by Enceladus. Scroll through to explore how the spacecraft discovered the moon’s subsurface ocean and its icy plume. Credit: NASA/JPL-Caltech

Previous analysis of Enceladus’ ice grains revealed concentrations of sodium, potassium, chlorine, and carbonate-containing compounds, and computer modeling suggested the subsurface ocean is of moderate alkalinity – all factors that favor habitable conditions.

Enceladus and Beyond

For this latest study, the authors accessed the data through NASA’s Planetary Data System, a long-term archive of digital data products returned from the agency’s planetary missions. The archive is actively managed by planetary scientists to help ensure its usefulness and usability by the worldwide planetary science community.

The authors focused on data collected by Cassini’s Cosmic Dust Analyzer instrument when it sampled icy particles from Enceladus in Saturn’s E ring. Many more ice particles were analyzed when Cassini flew through the E ring than when it went through just the plume, so the scientists were able to examine a much larger number of compositional signals there. By doing this, they discovered high concentrations of sodium phosphates – molecules of chemically bound sodium, oxygen, hydrogen, and phosphorus – inside some of those grains.

Get the Latest JPL News

SUBSCRIBE TO THE NEWSLETTER

Co-authors in Europe and Japan then carried out laboratory experiments to show that Enceladus’ ocean has phosphorus, bound inside different water-soluble forms of phosphate, in concentrations of at least 100 times that of our planet’s oceans. Further geochemical modeling by the team demonstrated that an abundance of phosphate may also be possible in other icy ocean worlds in the outer solar system, particularly those that formed from primordial ice containing carbon dioxide, and where liquid water has easy access to rocks.

“High phosphate concentrations are a result of interactions between carbonate-rich liquid water and rocky minerals on Enceladus’ ocean floor and may also occur on a number of other ocean worlds,” said co-investigator Christopher Glein, a planetary scientist and geochemist at Southwest Research Institute in San Antonio, Texas. “This key ingredient could be abundant enough to potentially support life in Enceladus’ ocean; this is a stunning discovery for astrobiology.”

Although the science team is excited that Enceladus has the building blocks for life, Glein stressed that life has not been found on the moon – or anywhere else in the solar system beyond Earth: “Having the ingredients is necessary, but they may not be sufficient for an extraterrestrial environment to host life. Whether life could have originated in Enceladus’ ocean remains an open question.”

Cassini’s mission came to an end in 2017, with the spacecraft burning up in Saturn’s atmosphere, but the trove of data it collected will continue to be a rich resource for decades to come. When it was launched, Cassini’s mission was to explore Saturn, its rings, and moons. The flagship mission’s array of instruments ended up making discoveries that continue to impact far more than planetary science.

“This latest discovery of phosphorus in Enceladus’ subsurface ocean has set the stage for what the habitability potential might be for the other icy ocean worlds throughout the solar system,” said Linda Spilker, Cassini’s project scientist at NASA’s Jet Propulsion Laboratory in Southern California, who was not involved in the study. “Now that we know so many of the ingredients for life are out there, the question becomes: Is there life beyond Earth, perhaps in our own solar system? I feel that Cassini’s enduring legacy will inspire future missions that might, eventually, answer that very question.”

More About the Mission

The Cassini-Huygens mission was a cooperative project of NASA, ESA (European Space Agency), and the Italian Space Agency. JPL, a division of Caltech in Pasadena, California, managed the mission for NASA’s Science Mission Directorate in Washington. JPL designed, developed, and assembled the Cassini orbiter.

For more information about Cassini, visit:

http://www.nasa.gov/cassini

and

http://saturn.jpl.nasa.gov

See Images From Cassini’s Mission to Saturn
8 Science Facts About Saturn’s Moon Enceladus
Classroom Activity: Looking for Life

News Media Contact

Ian J. O’Neill / Gretchen McCartney

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-2649 / 818-393-6215

ian.j.oneill@jpl.nasa.gov / gretchen.p.mccartney@jpl.nasa.gov

Karen Fox / Alana Johnson

NASA Headquarters, Washington

301-286-6284 / 202-358-1501

karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

2023-085

Related News

Solar System .

NASA’s Psyche Delivers First Images and Other Data

Solar System .

NASA’s 6-Pack of Mini-Satellites Ready for Their Moment in the Sun

Solar System .

Time Is Running Out to Add Your Name to NASA’s Europa Clipper

Solar System .

NASA’s Juno Finds Jupiter’s Winds Penetrate in Cylindrical Layers

Mars .

NASA’s Curiosity Rover Clocks 4,000 Days on Mars

Solar System .

Salts and Organics Observed on Ganymede’s Surface by NASA’s Juno

Solar System .

How NASA Is Protecting Europa Clipper From Space Radiation

Solar System .

NASA’s Voyager Team Focuses on Software Patch, Thrusters

Solar System .

NASA’s Psyche Spacecraft, Optical Comms Demo En Route to Asteroid

Solar System .

Journey to a Metal-Rich World: NASA’s Psyche Is Ready to Launch

Explore More

QUIZZES .

Space Trivia

Robot .

EELS (Exobiology Extant Life Surveyor)

Image .

NASA's Juno Mission Images Jupiter's Belts and Zones

Image .

Cylindrical Orientation of Jupiter's East-West Jet-Streams

Image .

Curiosity Views 'Sequoia' Using Its Mastcam

Image .

Curiosity's Navcams View the Area Around 'Sequoia'

Image .

Curiosity Mastcam Filter Wheel

Image .

Ganymede Grooved Terrain as Seen by Juno's JIRAM

Image .

Distribution of Buried Ice on Mars

Image .

Ice-Exposing Impact Crater Surrounded by Polygon Terrain

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
JPL Plan: 2023-2026
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisition JPL Store
Careers
Education
Science & Technology
Acquisition
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018