JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

Mars Ice Deposit Holds as Much Water as Lake Superior

Nov. 22, 2016
This vertically exaggerated view shows scalloped depressions in a part of Mars where such textures prompted researchers to check for buried ice, using ground-penetrating radar aboard NASA's Mars Reconnaissance Orbiter.› Full image and caption
Credit: NASA/JPL-Caltech/Univ. of Arizona
These two images show Shallow Radar (SHARAD) instrument data from two tracks in a part of Mars' Utopia Planitia region where the orbiting, ground-penetrating radar on NASA's Mars Reconnaissance Orbiter detected subsurface deposits rich in water ice.› Full image and caption
Credit: NASA/JPL-Caltech/Univ. of Rome/ASI/PSI
Diagonal striping on this map of a portion of Mars' Utopia Planitia region indicates the area where a large subsurface deposit rich in water ice was assessed using the Shallow Radar (SHARAD) instrument on NASA's Mars Reconnaissance Orbiter.› Full image and caption
Credit: NASA/JPL-Caltech/Univ. of Rome/ASI/PSI

Frozen beneath cracked, pitted plains on Mars lies about as much water as is in Lake Superior, researchers using NASA's Mars Reconnaissance Orbiter have determined.

Fast Facts:

› Water ice makes up half or more of an underground layer in a large region of Mars about halfway from the equator to the north pole.

› The amount of water in this deposit is about as much as in Lake Superior. It was assessed using a radar aboard a NASA spacecraft orbiting Mars.

› This research advances understanding about Mars' history and identifies a possible resource for future astronauts.

Frozen beneath a region of cracked and pitted plains on Mars lies about as much water as what's in Lake Superior, largest of the Great Lakes, researchers using NASA's Mars Reconnaissance Orbiter have determined.

Scientists examined part of Mars' Utopia Planitia region, in the mid-northern latitudes, with the orbiter's ground-penetrating Shallow Radar (SHARAD) instrument. Analyses of data from more than 600 overhead passes with the onboard radar instrument reveal a deposit more extensive in area than the state of New Mexico. The deposit ranges in thickness from about 260 feet (80 meters) to about 560 feet (170 meters), with a composition that's 50 to 85 percent water ice, mixed with dust or larger rocky particles.

At the latitude of this deposit -- about halfway from the equator to the pole -- water ice cannot persist on the surface of Mars today. It sublimes into water vapor in the planet's thin, dry atmosphere. The Utopia deposit is shielded from the atmosphere by a soil covering estimated to be about 3 to 33 feet (1 to 10 meters) thick.

"This deposit probably formed as snowfall accumulating into an ice sheet mixed with dust during a period in Mars history when the planet's axis was more tilted than it is today," said Cassie Stuurman of the Institute for Geophysics at the University of Texas, Austin. She is the lead author of a report in the journal Geophysical Research Letters.

Mars today, with an axial tilt of 25 degrees, accumulates large amounts of water ice at the poles. In cycles lasting about 120,000 years, the tilt varies to nearly twice that much, heating the poles and driving ice to middle latitudes. Climate modeling and previous findings of buried, mid-latitude ice indicate that frozen water accumulates away from the poles during high-tilt periods.

Martian Water as a Future Resource

The name Utopia Planitia translates loosely as the "plains of paradise." The newly surveyed ice deposit spans latitudes from 39 to 49 degrees within the plains. It represents less than one percent of all known water ice on Mars, but it more than doubles the volume of thick, buried ice sheets known in the northern plains. Ice deposits close to the surface are being considered as a resource for astronauts.

"This deposit is probably more accessible than most water ice on Mars, because it is at a relatively low latitude and it lies in a flat, smooth area where landing a spacecraft would be easier than at some of the other areas with buried ice," said Jack Holt of the University of Texas, a co-author of the Utopia paper who is a SHARAD co-investigator and has previously used radar to study Martian ice in buried glaciers and the polar caps.

The Utopian water is all frozen now. If there were a melted layer -- which would be significant for the possibility of life on Mars -- it would have been evident in the radar scans. However, some melting can't be ruled out during different climate conditions when the planet's axis was more tilted. "Where water ice has been around for a long time, we just don't know whether there could have been enough liquid water at some point for supporting microbial life," Holt said.

Utopia Planitia is a basin with a diameter of about 2,050 miles (3,300 kilometers), resulting from a major impact early in Mars' history and subsequently filled. NASA sent the Viking 2 Lander to a site near the center of Utopia in 1976. The portion examined by Stuurman and colleagues lies southwest of that long-silent lander.

Use of the Italian-built SHARAD instrument for examining part of Utopia Planitia was prompted by Gordon Osinski at Western University in Ontario, Canada, a co-author of the study. For many years, he and other researchers have been intrigued by ground-surface patterns there such as polygonal cracking and rimless pits called scalloped depressions -- "like someone took an ice-cream scoop to the ground," said Stuurman, who started this project while a student at Western.

Clue from Canada

In the Canadian Arctic, similar landforms are indicative of ground ice, Osinski noted, "but there was an outstanding question as to whether any ice was still present at the Martian Utopia or whether it had been lost over the millions of years since the formation of these polygons and depressions."

The large volume of ice detected with SHARAD advances understanding about Mars' history and identifies a possible resource for future use.

"It's important to expand what we know about the distribution and quantity of Martian water," said Mars Reconnaissance Orbiter Deputy Project Scientist Leslie Tamppari, of NASA's Jet Propulsion Laboratory, Pasadena, California. "We know early Mars had enough liquid water on the surface for rivers and lakes. Where did it go? Much of it left the planet from the top of the atmosphere. Other missions have been examining that process. But there's also a large quantity that is now underground ice, and we want to keep learning more about that."

Joe Levy of the University of Texas, a co-author of the new study, said, "The ice deposits in Utopia Planitia aren't just an exploration resource, they're also one of the most accessible climate change records on Mars. We don't understand fully why ice has built up in some areas of the Martian surface and not in others. Sampling and using this ice with a future mission could help keep astronauts alive, while also helping them unlock the secrets of Martian ice ages."

SHARAD is one of six science instruments on the Mars Reconnaissance Orbiter, which began its prime science phase 10 years ago this month. The mission's longevity is enabling studies of features and active processes all around Mars, from subsurface to upper atmosphere. The Italian Space Agency provided the SHARAD instrument and Sapienza University of Rome leads its operations. The Planetary Science Institute, based in Tucson, Arizona, leads U.S. involvement in SHARAD. JPL, a division of Caltech in Pasadena, manages the orbiter mission for NASA's Science Mission Directorate in Washington. Lockheed Martin Space Systems of Denver built the spacecraft and supports its operations.

http://mars.nasa.gov

News Media Contact

Dwayne Brown / Laurie Cantillo

202-358-1726 / 202-358-1077

dwayne.c.brown@nasa.gov / laura.l.cantillo@nasa.gov

Guy Webster

818-354-6278

guy.webster@jpl.nasa.gov

Anton Caputo

512-232-9623

anton.caputo@jsg.utexas.edu

2016-299

Related News

Mars .

My Favorite Martian Image: ‘Enchanted’ Rocks at Jezero Crater

Mars .

Help NASA Scientists Find Clouds on Mars

Robotics .

Swarm of Tiny Swimming Robots Could Look for Life on Distant Worlds

Mars .

NASA’s Curiosity Takes Inventory of Key Life Ingredient on Mars

Asteroids and Comets .

NASA to Discuss Psyche Asteroid Mission

Mars .

NASA Mars Orbiter Releasing One of Its Last Rainbow-Colored Maps

Mars .

NASA’s Curiosity Captures Stunning Views of a Changing Mars Landscape

Mars .

NASA’s InSight Gets a Few Extra Weeks of Mars Science

Mars .

NASA, Partner Establish New Research Group for Mars Sample Return Program

Solar System .

NASA’s Europa Clipper Mission Completes Main Body of the Spacecraft

Explore More

Image .

Mamers Valles

Image .

Nilus Chaos

Image .

Nanedi Valles

Image .

Radar Observations of Near-Earth Asteroid 7335 1989 JA

Image .

Enchanted View of Jezero Rocks

Image .

Oti Fossae - Arsia Mons

Event June 30, 2022 .

JPL & the Space Age: The Pathfinders

Event June 30, 2022 .

JPL & the Space Age: The Pathfinders

Image .

A Complex Geologic History of Aram Chaos

Image .

Spring Fans and Polygons

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono