JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Mars
.

Marks on Martian Dunes May Be Tracks of Dry-Ice Sleds

June 11, 2013
Several types of downhill flow features have been observed on Mars. This image from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter is an example of a type called "linear gullies."› Full image and caption
Credit: NASA/JPL-Caltech/Univ. of Arizona
As on the Earth, many processes can move material down a Martian slope. This graphic compares seven different types of features observed on Mars that appear to result from material flowing or sliding or rolling down slopes.› Full image and caption
Credit: NASA/JPL-Caltech/ASA/MSSS/UA
These examples of one distinctive type of Martian gullies, called "linear gullies," are on a dune in Matara Crater, seen at different times of year to observe changes.› Full image and caption
Credit: NASA/JPL-Caltech/Univ. of Arizona

NASA research indicates hunks of frozen carbon dioxide -- dry ice -- may glide down some Martian sand dunes on cushions of gas similar to miniature hovercraft, plowing furrows as they go.

PASADENA, Calif. -- NASA research indicates hunks of frozen carbon dioxide -- dry ice -- may glide down some Martian sand dunes on cushions of gas similar to miniature hovercraft, plowing furrows as they go.

Researchers deduced this process could explain one enigmatic class of gullies seen on Martian sand dunes by examining images from NASA's Mars Reconnaissance Orbiter (MRO) and performing experiments on sand dunes in Utah and California.

"I have always dreamed of going to Mars," said Serina Diniega, a planetary scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif., and lead author of a report published online by the journal Icarus. "Now I dream of snowboarding down a Martian sand dune on a block of dry ice."

The hillside grooves on Mars, called linear gullies, show relatively constant width -- up to a few yards, or meters, across -- with raised banks or levees along the sides. Unlike gullies caused by water flows on Earth and possibly on Mars, they do not have aprons of debris at the downhill end of the gully. Instead, many have pits at the downhill end.

"In debris flows, you have water carrying sediment downhill, and the material eroded from the top is carried to the bottom and deposited as a fan-shaped apron," said Diniega. "In the linear gullies, you're not transporting material. You're carving out a groove, pushing material to the sides."

Images from MRO's High Resolution Imaging Science Experiment (HiRISE) camera show sand dunes with linear gullies covered by carbon-dioxide frost during the Martian winter. The location of the linear gullies is on dunes that spend the Martian winter covered by carbon-dioxide frost. By comparing before-and-after images from different seasons, researchers determined that the grooves are formed during early spring. Some images have even caught bright objects in the gullies.

Scientists theorize the bright objects are pieces of dry ice that have broken away from points higher on the slope. According to the new hypothesis, the pits could result from the blocks of dry ice completely sublimating away into carbon-dioxide gas after they have stopped traveling.

"Linear gullies don't look like gullies on Earth or other gullies on Mars, and this process wouldn't happen on Earth," said Diniega. "You don't get blocks of dry ice on Earth unless you go buy them."

That is exactly what report co-author Candice Hansen, of the Planetary Science Institute in Tucson, Ariz., did. Hansen has studied other effects of seasonal carbon-dioxide ice on Mars, such as spider-shaped features that result from explosive release of carbon-dioxide gas trapped beneath a sheet of dry ice as the underside of the sheet thaws in spring. She suspected a role for dry ice in forming linear gullies, so she bought some slabs of dry ice at a supermarket and slid them down sand dunes.

That day and in several later experiments, gaseous carbon dioxide from the thawing ice maintained a lubricating layer under the slab and also pushed sand aside into small levees as the slabs glided down even low-angle slopes.

The outdoor tests did not simulate Martian temperature and pressure, but calculations indicate the dry ice would act similarly in early Martian spring where the linear gullies form. Although water ice, too, can sublimate directly to gas under some Martian conditions, it would stay frozen at the temperatures at which these gullies form, the researchers calculate.

"MRO is showing that Mars is a very active planet," Hansen said. "Some of the processes we see on Mars are like processes on Earth, but this one is in the category of uniquely Martian."

Hansen also noted the process could be unique to the linear gullies described on Martian sand dunes.

"There are a variety of different types of features on Mars that sometimes get lumped together as 'gullies,' but they are formed by different processes," she said. "Just because this dry-ice hypothesis looks like a good explanation for one type doesn't mean it applies to others."

The University of Arizona Lunar and Planetary Laboratory operates the HiRISE camera, which was built by Ball Aerospace & Technologies Corp. of Boulder, Colo. JPL, a division of the California Institute of Technology in Pasadena, manages MRO for NASA's Science Mission Directorate in Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

To see images of the linear gullies and obtain more information about MRO, visit: http://www.nasa.gov/mro .

For more about HiRISE, visit: http://hirise.lpl.arizona.edu .

News Media Contact

Guy Webster

818-354-6278

guy.webster@jpl.nasa.gov

Dwayne Brown

202-358-1726

dwayne.c.brown@nasa.gov

2013-200

Related News

Solar System .

NASA’s Magellan Data Reveals Volcanic Activity on Venus

Mars .

Engineers Keep an Eye on Fuel Supply of NASA’s Oldest Mars Orbiter

Solar System .

Study Finds Ocean Currents May Affect Rotation of Europa’s Icy Crust

Mars .

NASA’s Curiosity Views First ‘Sun Rays’ on Mars

Solar System .

Study Finds Venus’ ‘Squishy’ Outer Shell May Be Resurfacing the Planet

Mars .

NASA’s Perseverance Rover Set to Begin Third Year at Jezero Crater

Mars .

NASA’s Perseverance Rover Shows Off Collection of Mars Samples

Solar System .

NASA’s NuSTAR Telescope Reveals Hidden Light Shows on the Sun

Mars .

NASA’s Curiosity Finds Surprise Clues to Mars’ Watery Past

Mars .

NASA’s Perseverance Rover Completes Mars Sample Depot

Explore More

Image .

Ingenuity and Perseverance Make Tracks

Image .

Eumenides Dorsum

Image .

Chaos

Image .

Perseverance Views Drifting Clouds

Image .

Icaria Fossae

Image .

South Polar Ice

Image .

South Polar Ice

Video .

Perseverance's Mastcam-Z Views Ingenuity's 47th Takeoff

Image .

Southern Dunes

Image .

South Polar Ice

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018