JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

Mapping Volcanic Heat on Io

Jun 08, 2012
Thermal emission from erupting volcanoes on the jovian moon, Io. A logarithmic scale is used to classify volcanoes on the basis of thermal emission: the larger the spot, the larger the thermal emission.
Credit: NASA/JPL-Caltech/Bear Fight Institute

A new study reveals information about the pattern of heat coming from volcanoes on the surface of Jupiter's fiery moon Io.

A new study finds that the pattern of heat coming from volcanoes on Io's surface disposes of the generally-accepted model of internal heating.  The heat pouring out of Io's hundreds of erupting volcanoes indicates a complex, multi-layer source.  These results come from data collected by NASA spacecraft and ground-based telescopes and appear in the June issue of the journal Icarus. 

A map of hot spots, classified by the amount of heat being emitted, shows the global distribution and wide range of volcanic activity on Io.  Most of Io's eruptions dwarf their contemporaries on Earth.

"This is the most comprehensive study of Io's volcanic thermal emission to date," said Glenn Veeder of the Bear Fight Institute, Winthrop, Wash., who led the work of a multi-faceted team that included Ashley Davies, Torrence Johnson and Dennis Matson of NASA's Jet Propulsion Laboratory, Pasadena, Calif., Jani Radebaugh of Brigham Young University, in Provo, Utah, and David Williams of Arizona State University, Tempe, Ariz.  The team examined data primarily from the NASA's Voyager and Galileo missions, but also incorporated infrared data obtained from telescopes on Earth.  

"The fascinating thing about the distribution of the heat flow is that it is not in keeping with the current preferred model of tidal heating of Io at relatively shallow depths," said Davies.  "Instead, the main thermal emission occurs about 40 degrees eastward of its expected positions." 

"The pattern that emerges points to a complex heating process within Io," said Matson.  "What we see indicates a mixture of both deep and shallow heating."

A mystery has also emerged.  The team found that active volcanoes accounted for only about 60 percent of Io's heat.  This component mostly emanates from flat-floored volcanic craters called paterae, a common feature on Io.  But where is the "missing" 40 percent?  "We are investigating the possibility that there are many smaller volcanoes that are hard, but not impossible, to detect," said Veeder. "We are now puzzling over the observed pattern of heat flow." 

Understanding this will help identify the tidal heating mechanisms not only within Io, but also may apply to neighboring Europa, a high-priority target for NASA in its search for life beyond Earth. 

The Galileo mission was managed by NASA's Jet Propulsion Laboratory in Pasadena, Calif., for the agency's Science Mission Directorate. The mission was launched by the space shuttle Atlantis in 1989 to Jupiter, produced numerous discoveries and provided scientists decades worth of data to analyze. Galileo was the first spacecraft to directly measure Jupiter's atmosphere with a probe and conduct long-term observations of the Jovian system. NASA extended the mission three times to take advantage of Galileo's unique science capabilities, and the spacecraft was put on a collision course into Jupiter's atmosphere in September 2003 to eliminate any chance of impacting Europa.
JPL is a division of the California Institute of Technology in Pasadena.

For more information about the Galileo mission, visit: http://solarsystem.nasa.gov/galileo/ .

News Media Contact

Priscilla Vega/Jia-Rui Cook

818-354-1357/4-0850

Priscilla.r.vega@jpl.nasa.gov / jccook@jpl.nasa.gov

2012-167

Related News

Solar System .

NASA’s Deep Space Network Welcomes a New Dish to the Family

Mars .

6 Things to Know About NASA’s Mars Helicopter on Its Way to Mars

Mars .

NASA to Host Virtual Briefing on February Perseverance Mars Rover Landing

Mars .

NASA InSight’s ‘Mole’ Ends Its Journey on Mars

Mars .

Mars 2020 Perseverance Rover to Capture Sounds From the Red Planet

Solar System .

NASA’s Juno Mission Expands Into the Future

Mars .

NASA’s Curiosity Rover Reaches Its 3,000th Day on Mars

Mars .

NASA Extends Exploration for Two Planetary Science Missions

Mars .

Celebrate the Perseverance Rover Landing With NASA's Student Challenge

Mars .

7 Things to Know About the NASA Rover About to Land on Mars

Explore More

Image .

Juno's Mission Goes On

Topic .

Solar System

Image .

A Hot Spot on Jupiter

Image .

Jupiter's Storm Oval BA As Viewed By An Artist

Image .

Two Views of Jupiter Hot Spot

Image .

A Jupiter Circumpolar Cyclone

Image .

Jupiter North Pole Detail

Video .

What's Up - January 2021

Image .

All Eight Northern Circumpolar Cyclones in 2020

Image .

Tracking Clouds on Jupiter

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono